Challenge ROADEF'99 - Inventory Management Problem

Clarisse DHAENENS-FLIPO, Sylvain DURAND

Laboratoire LEIBNIZ-IMAG

46, avenue Félix Viallet

38031 Grenoble Cedex

{Clarisse.Flipo,Sylvain.Durand}@imag.fr

Abstract:

This paper presents a heuristic method developed to deal with the Inventory Management Problem (IMP) exposed for the ROADEF'99 challenge. The procedure combines exact and approximation schemes. This paper presents the general philosophy of the heuristic and details some of the procedures used.

1 - Introduction

The Inventory Management Problem exposed for the challenge deals with managing a fleet of equipment in order to satisfy requests. A crucial question is what to do when the demands exceed the stock. The answer may be either to buy other equipments, in order to increase the stock, or to subcontract some requests to other providers.

The given example deals with car rentals where some cars of different types are available and customers ask for cars of some type for a given period. All requests have to be satisfied.

2 - The algorithm

2.1 - The assignment procedure

This procedure allocates to each request either a vehicle from the initial stock or a new vehicle, or a vehicle from a subcontractor. It also manages maintenance of vehicles. It is divided into 3 phases : The first phase proceeds with the assignment, the second phase optimizes locations and purchases and the third phase looks for substitutions.

The allocation procedure is described below. Words in bold and italic represent other procedures or functions described in the following sections.

Phase I: Affectation of vehicles in stock

For every resource r 	// (in decreasing order of Crent)

	Aff_Opti(r) 	// looking for a good affectation using CPLEX

	For every vehicle v in stock

		// Using result of Aff_Opti

		For every order o affected to v by Aff_Opti

			If Possible_Alloc(o,r,v)

				If Maintenance()

					Allocation(o,r,v)

	For every vehicle v in stock

		// Try to allocate order not yet allocated	

		For every order o not allocated

			If Possible_Alloc(o,r,v)

				If Maintenance()

					Allocation(o,r,v)

Phase I’: Identical to Phase I with vehicles that may be purchased (if purchase is authorized)

Phase II: Rent or Buy?

For every resource r

	begin

		Rent order non allocated

		Buy_Opti(r)

	end

Phase III: Substitutions

For every resource r 	// (in decreasing order of Crent)

	Substitution(r)

In this procedure, resources are considered in decreasing order of their renting costs, because for the given test set, this order gives better results than other orders we tried (decreasing order of their purchasing costs, decreasing order of the product purchasing(renting costs, increasing order of the ratio purchasing / renting costs,...).

2.2 - Procedure Aff_Opti(r)

This procedure looks for an affectation of orders to the vehicles of a given resource r, that maximizes the total length of assigned orders, without considering the maintenance problem. It solves the following Mixed Integer Problem using Cplex 5.0. Variable Xov equals 1 if order 0 is allocated to vehicle v and 0 otherwise.

		� INCORPORER Equation.2 ���	(1)

	s.t.:	� INCORPORER Equation.2 ���	(2)

	� INCORPORER Equation.2 ���	(3)

� INCORPORER Equation.2 ���	� INCORPORER Equation.2 ���	(4)

The objective function (1) deals with the maximization of the used-time of vehicles. Constraints (2) allows, for any order, to be allocated as many time as it is required. Constraints (3) avoid overlappings between orders. Finally, constraints (4) ensure that an order is at most allocated once to a given vehicle. To detect overlapping and to anticipate maintenance we use condition 1 :

Condition 1 : ((et(o) + mint - st(o’) ((et(o’) + mint - st(o)) > 0

where mint equals Mtime if (et(o)-st(o) + et(o’)-st(o’)) (Utime (2/3 and 0 otherwise.

The value of mint anticipates a maintenance, which will certainly be required for the vehicle between the two orders o and o’, if the total length of the two orders is greater than 2/3 of Utime.

Other values have been tried instead of 2/3, but it appears that for the given test set, this value is the most interesting.

The solution, given by Cplex 5.0, is then used to allocate (if possible) orders to vehicles.

�
2.3 - Function Possible_Alloc(o,r,v)

This function determines if it is possible to allocate the new order o the vehicle v of resource r according to orders already allocated to this vehicle (overlapping verification). It also calculates the intervals during which each maintenance has to be done (used by function Maintenance()).

2.4 - Function Maintenance()

This heuristic method checks if the maintenance due to the new affectation is compatible, with the maintenance capacity.

For every maintenance m in increasing order of margin

// margin = length of interval during which the maintenance has to be done minus the maintenance duration

	begin

	try to execute the maintenance as early as possible

	if possible

		then try to avoid too small free periods by skipping right

		else return FALSE

	end

This heuristic has been compared with an exact solution found solving a mixed integer program with Cplex. It appears that the heuristic gives, most of the time, the same answer but much faster.

2.5 - Procedure allocation(o,r,v)

Once an allocation has been proven to be possible, this procedure modifies data to take into account the allocation of order o to vehicle v of resource r.

2.6 - Procedure Buy_Opti(r)

This procedure is used to optimize the purchase of vehicles (when this is authorized). Until this point, we consider each vehicle that may be bought as purchased. For vehicles that are not much used, it may be better to rent orders allocated to these vehicles instead of buying those vehicles. We compare the two costs (buying and renting) for every vehicle and determine if a vehicle should be bought or not.

2.7 - Procedure Substitution(r)

This procedure tries to avoid too much renting by looking for a possible allocation to vehicles of resources that may substitute others.

For every rent o of resource r

	// Look for an allocation on vehicles of resources that may substitute r

	For every resources s that may substitute r

		For every vehicle v of s

			If Possible_Alloc(o,s,v)

				If Maintenance()

					Allocation(o,s,v)

�
2.7 - General loop

When purchase is authorized, we try to put the affectation procedure in a large loop that modifies the number of available vehicles according to the solution found in the previous step. The aim of this loop was to avoid allocations of orders to vehicles that will, at the end, not be purchased, and so, not to consider extra-maintenances. But this loop increases a lot the computation time without decreasing significantly the cost of the solutions. We decided not to use it, so that our heuristic remains fast and could be used in other general schemes.

3 - Results

Our heuristic was tested on a Pentium 133 PC, using Cplex 5.0 to solve Mixed Integer Programs. We report in the two following tables costs of solutions found with our heuristic and the time required to find them (in seconds). For each instance, two solutions are reported : the first one, very fast, does not use the procedure Aff_opti(r) whereas the second one uses this procedure with a time limit for Cplex.

Instances with purchase

Instances�
I808b�
I1507b�
I2007b�
I2007bisb�
I2109b�
I2109bisb�
I21012b�
I16012b�
�
Costs�
1268911�
3350862�
6616922�
4655901�
7067069�
4801257�
6327989�
3882379�
�
Time (s)�
0�
1�
1�
1�
2�
1�
1�
1�
�

Instances�
I808b�
I1507b�
I2007b�
I2007bisb�
I2109b�
I2109bisb�
I21012b�
I16012b�
�
Costs�
1227925�
3183070�
6556285�
4614333�
7218024�
4765393�
6240339�
3738004�
�
Time (s)�
15�
416�
578�
443�
618�
551�
621�
280�
�

Instances without purchase

Instances�
I808nb�
I1507nb�
I2007nb�
I2007bisnb�
I2109nb�
I2109bisnb�
I20012nb�
I16012b�
�
Costs�
1394312�
3856717�
6919194�
5377771�
7426825�
6041291�
7255676�
4301278�
�
Time (s)�
1�
0�
2�
1�
1�
1�
1�
1�
�

Instances�
I808nb�
I1507nb�
I2007nb�
I2007bisnb�
I2109nb�
I2109bisnb�
I20012nb�
I16012b�
�
Costs�
1260699�
3599552�
6803419�
5217638�
7385337�
5807505�
6868862�
4017466�
�
Time (s)�
16�
1846�
2104�
2104�
2491�
2490�
2256�
836�
�

4 - Perspectives

As in every industrial project, we had to deal with a deadline for submitting our method. The version presented in this paper is the one of the 26th of November. Several improvements could be done ; for example, the time limit for Cplex (in the Aff_Opti(r) procedure) could be adjusted to each instance in order to reach the one hour limit of computing time, when necessary. Another improvement would be to use the speed of the heuristic by executing it several times with different parameters (order of the resources, order of the orders,…)

�

DHAENENS-DURAND	Challenge ROADEF99	P � PAGE �1�

