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Abstract

The ROADEF challenge is organized every two years by the French Society of Operations Research and Decision-
Making Aid. The goal is to allow industrial partners to witness recent developments in the field of Operations Research
and Decision Analysis, and researchers to face up a decisional problem, often complex, occurred in industry.

In 2005, the subject of this challenge has been proposed by the car manufacturer RENAULT and concerned a car
sequencing problem. This problem involves scheduling cars along an assembly line with hard and soft capacity constraints.
The industrial problem considered in the challenge differs from the standard problem since, besides capacity constraints
imposed by the assembly shop, it also introduces paint batching constraints to minimize the consumption of solvents in
the paint shop.

We review the exact and heuristic methods of the literature proposed to solve the standard problem and we present the
industrial context and the specificities of the challenge problem. We describe the process of the ROADEF’2005 challenge
and the methods proposed by the competing teams. We also analyse the results of these methods on the car sequencing
instances provided by RENAULT. The final ranking of the candidates is reported and directions for future research based
on the results are drawn.
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1. Introduction

The ROADEF challenge is organized every two
years by the French Society of Operations Research
and Decision-Making Aid. The goal is to allow
industrial partners to witness recent developments
in the field of Operations Research and Decision
.
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Analysis, and researchers to face up a decisional
problem, often complex, occurred in industry.

In 2005, the subject of this challenge has been
proposed by the car manufacturer RENAULT. It
concerned a car sequencing problem which is solved
since 1993 in the RENAULT factories by an optimi-
zation in-house software based on simulated annea-
ling. However, following the strategic choices of the
company to enforce an absolute respect of the pre-
computed baseline schedule, this problem has
become particularly crucial these last years.

A point has to be highlighted. European automo-
tive companies rely on a built-to-order production
system, instead of a built-to-inventory perspective
typical of American or Japanese automakers. Euro-
pean customers are used to order exactly the ‘‘right’’
car in short delay. For instance, RENAULT’s
plants can produce vehicles with only 6 days ahead
notice. The built-to-order perspective tends to gen-
erate a very high vehicle diversity in assembly
plants, that is very different vehicles and a great
variety of car sequences from day to day, since the
cars are ordered by customers, and not by dealer-
ships which tend to select a restrictive pool of vehi-
cles. Therefore RENAULT has to tackle car
sequences with a high number of options combina-
tions, clearly a challenge for car sequencing
algorithms!

Outline of the paper. The problem considered in
the challenge is a practical extension of a classical
car sequencing problem, the goal of which is to
schedule cars along an assembly line while satisfying
capacity constraints. Section 2 defines this standard
problem and discusses complexity issues.

This standard problem has been widely studied
since its first introduction in 1986, and it is a classi-
cal benchmark problem. Section 3 describes exact
approaches, that solve the problem to optimality,
while Section 4 describes heuristic approaches, that
solve the problem approximately.

The industrial problem considered in the chal-
lenge differs from the standard problem since,
besides capacity constraints imposed by the assem-
bly shop, it also introduces paint batching con-
straints to minimize the consumption of solvents
in the paint shop. Section 5 describes the industrial
context of the problem and defines it as a lexico-
graphic multiobjective optimization problem.

Twenty-seven teams (a record of participation!),
coming from all over the world, have competed
for solving this problem. Section 6 describes the
challenge process—that allows the organizers to
decide between the teams—and gives an overview
of the different proposed methods and their results.

Concluding remarks, directions for further
research and a presentation of the EJOR feature
cluster papers are given in Section 7.

2. Definitions and complexity issues

The car sequencing problem has been first
described by Parello et al. in 1986 [30]. This problem
involves scheduling cars along an assembly line, in
order to install options (e.g., sun-roof, radio, or
air-conditioning) on them. Each option is installed
by a different station, designed to handle at most a
certain percentage of the cars passing along the
assembly line, and the cars requiring this option
must be spaced such that the capacity of every sta-
tion is never exceeded.

This requirement may be formalized by p/q ratio
constraints: each option is associated with a p/q
ratio constraint that states that any subsequence
of q vehicles may comprise at most p vehicles requir-
ing this option.

Definition of a problem instance. An instance of
the car sequencing problem is defined by a tuple
(V,O,p,q, r), where

• V = {v1, . . . ,vn} is the set of vehicles to be
produced.

• O = {o1, . . . ,om} is the set of different options.
• p : O! N and q : O! N define the capacity

constraint associated with each option oi 2 O;
this capacity constraint imposes that, for any
subsequence of qi consecutive cars on the line,
at most pi of them may require oi.

• r : V · O! {0,1} defines options requirements,
i.e., for each vehicle vj 2 V and for each option
oi 2 O, rji = 1 if oi must be installed on vj, and
rji = 0 otherwise.

Note that two different cars of V may require a same
configuration of options, i.e. a same set of required
options; all cars requiring a same configuration of
options are clustered into a same car class. More
precisely, there are k different car classes so that V

is partitioned into k subsets V = V1 [ V2 [ . . . Vk

such that all vehicles within a same subset Vi require
a same configuration of options.

Solution of a problem instance. The car sequenc-
ing problem involves finding an arrangement of
the vehicles of V in a sequence, thus defining the
order in which they will pass along the assembly line.
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The decision problem consists in deciding whether it
is possible to find a sequence that satisfies all capac-
ity constraints, whereas the optimization problem

involves finding a minimum cost sequence, where
the cost function evaluates constraint violations.

In the original formulation of the problem pro-
posed in [30], the cost depends on the options con-
cerned by constraint violations, the number of
vehicles exceeding capacity constraints and how
close these vehicles are sequenced together. How-
ever, in most work, this cost function has been sim-
plified and is defined as the sum, for every option
oi 2 O, of the number of subsequences of qi consec-
utive cars such that the number of cars requiring
option oi in the subsequence is greater than the
capacity pi of the option. A still different definition
of the cost of a sequence has been proposed in
[22,32,33], where it is defined as the number of
‘‘empty’’ cars (requiring no option) that should be
inserted in the sequence so that all capacity con-
straints are met.

Complexity issues. The decision problem has
been shown to be NP-hard by Gent [17], by a trans-
formation from the Hamiltonian path problem, and
by Kis [24], by a transformation from the exact
cover by 3-sets problem. Kis also showed that the
problem is NP-hard in the strong sense and does
not belong to NP in the general case. This comes
from the fact that an instance of the car sequencing
problem may be encoded by giving, for each differ-
ent car class, the number of cars belonging to this
class and the subset of options required by these
cars. With such an encoding, and provided that
the number of cars within a same car class can be
arbitrarily large, the length of a solution (which is
a sequence of jVj car classes) is not bounded by a
polynomial in the length of the instance.

Search space and utilization rates. The search
space of an instance (V,O,p,q, r) of the car sequenc-
ing problem is composed of all possible permuta-
tions of the vehicles of V requiring different
configurations of options. Hence, if V is partitioned
into k different car classes V1,V2, . . . ,Vk, the number
of different arrangements of the vehicles of V in a
sequence is

jV j!
jV 1j! � jV 2j! � . . . � jV kj!

:

The difficulty of an instance of the car sequencing
problem depends on the size of its search space
but also on the utilization rates of the different
options, as pointed out by Smith in [36]. The utiliza-
tion rate of an option corresponds to the ratio of the
number of cars requiring it with respect to the maxi-
mum number of cars in a sequence which could
have it while satisfying its capacity constraint. An
utilization rate close to 1 indicates that the demand
is close to the capacity, i.e., a hardly constrained
option.
3. Solving the car sequencing problem with exact

approaches

3.1. Constraint programming

Constraint Programming (CP) is a generic tool
for solving constraint satisfaction problems (CSPs),
i.e., problems modelled by specifying constraints on
acceptable solutions, where a constraint is a relation
among several unknowns or variables, each variable
taking a value from a given domain [39]. To solve a
CSP with a CP language, one only has to specify it
by means of variables and constraints, the solution
process being handled by generic algorithms that
are integrated within the CP language. These algo-
rithms, called constraint solvers, are often based
on a systematic exploration of the search space,
until either a solution is found, or the problem is
proven to have no solution. In order to reduce the
search space, this approach is combined with filter-
ing techniques that narrow variable domains with
respect to some partial consistencies such as Arc-
Consistency [39].

The car sequencing problem is a classical bench-
mark for CP languages, and it is the first problem of
CSPLib, the library of test problems for constraint
solvers [21]. It has been used to illustrate solving
capabilities of CP languages such as, e.g., CHIP
[11], cc(FD) [23], and CLP(FD) [4].

The CSP formulation of the car sequencing prob-
lem usually introduces two different kinds of vari-
ables and three different kinds of constraints:

• A slot variable Xi is associated with each position
i in the sequence of cars. This variable corre-
sponds to the class of the ith car in the sequence
and its domain is the set of all car classes.

• An option variable Oj
i is associated with each

position i in the sequence and each option j. This
variable is assigned to 1 if option j has to be
installed on the ith car of the sequence, and 0
otherwise, so that its domain is {0, 1}.
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• Link constraints specify the link between slot and
option variables, i.e., Oj

i ¼ 1 if and only if option
j has to be installed on Xi. These constraints are
stated thanks to element global constraints.

• Capacity constraints specify that station capaci-
ties must not be exceeded, i.e., for each option j

and each subsequence of qi cars, a linear inequal-
ity specifies that the sum of the corresponding
option variables must be smaller or equal to pi.

• Demand constraints specify, for each car class, the
number of cars of this class that must be
sequenced. These constraints are stated thanks
to atmost global constraints [41].

Most works on solving the car sequencing problem
with CP consider the decision problem, and the out-
put is either a solution that satisfies all capacity con-
straints, or a failure indicating that such a solution
does not exist. However, Bergen et al. [3] have pro-
posed a constraint-based approach for a particular
car sequencing problem that contains both hard
constraints, that must be satisfied, and soft con-
straints, that can be violated at a cost.

Constraint programming has been shown to be
effective to solve easy or small instances of the car
sequencing problem, but it is not competitive with
dedicated approaches on harder or larger instances.
To improve the solution process of constraint pro-
gramming, Smith has proposed to add value order-
ing heuristics [36]. The idea is to schedule the
‘‘difficult’’ cars as early as possible, where the diffi-
culty of a car is defined with respect to the utiliza-
tion rates of its options.

Also, Régin and Puget have introduced in [35] a
global sequencing constraint for imposing minimal
and maximal bounds on the number of occurrences
of values within periods of consecutive time units.
They have proposed a filtering algorithm that is
dedicated to this sequencing constraint and that
exploits its global semantic to narrow more effi-
ciently variable domains. This filtering algorithm
has been integrated to Ilog Solver, a commercial
CP library, and illustrated on the car sequencing
problem. It allows Ilog Solver to solve some hardly
constrained feasible instances, or to prove infeasibil-
ity of some over-constrained instances. However, on
some other instances, it still cannot reduce domains
enough to make CP tractable. Most recently, van
Hoeve et al. [40] have proposed three new filtering
algorithms for the global sequencing constraint.
Experimental results on instances of the test suite
provided by Lee et al. [25] show that combining
these algorithms to the filtering algorithm of [35]
significantly improves the solution process, even
though some instances are still not solved within a
reasonable amount of time.

3.2. Integer programming

Drexl and Kimms [8] have proposed an integer
programming model for the decisional version of
the car sequencing problem. The model is based on
0–1 variables Cij associated with each car class i

and each position j—to decide if the car at position
j is of class i. Linear constraints ensure that (i) exactly
one car class is assigned to each position, (ii) all cars
of each class are assigned to a position, and (iii) all
pk/qk capacity constraints are satisfied for each
option k. The car sequencing problem is mixed with
a level scheduling problem, which considers the
objective of minimizing the sum of deviations of
the vehicle scheduled periods from ideal ones. Hence
the considered problem is the car sequencing prob-
lem with hard capacity constraints and a level sched-
uling objective. A second integer programming
model is proposed, based on an exponential number
of 0–1 variables yk such that yk = 1 if sequence k is
selected, where a sequence is related to a class, giving
the positions of the vehicles belonging to this class.
Lower and upper bounds are computed through a
column generation method. Computational results
are presented on a set of generated instances.

Gravel et al. [18] have proposed an integer pro-
gramming model for the car sequencing problem
with soft capacity constraints. This model associates
the Cij variable already used in [8] and a 0–1 variable
Ykj to each option k and each position j—to decide
if the subsequence of length qk starting at position j
satisfies the pk/qk capacity constraint. Linear con-
straints are defined to ensure that Ykj variables are
assigned to one if and only if the corresponding sub-
sequence violates the capacity constraint. The objec-
tive is to minimize the sum of all Ykj variables. This
integer programming formulation allowed the
authors to find feasible solutions to all the instances
of the test suite provided by Lee [25] in CSPLib, and
four instances of the test suite provided by Smith.
However, it could not prove optimality for the five
other instances.

3.3. Ad-hoc method

Drexl et al. [9] have proposed a dedicated branch-
and-bound method to solve the car sequencing and
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level scheduling problem they already considered in
[8] (see Section 3.2). Considering only the car
sequencing part, the method is based on an original
branching scheme based on the concept of Car
Sequencing (CS) state. A CS state is associated to
each node of the branch and bound tree. Besides
the partial sequence corresponding to the node, the
CS state is characterized by a matrix (mij)O·{1, . . . , jVj}
where mij = 0 if option i is present in position j,
mij = 1 if option i may be planned in position j and
mij = �1 if it cannot be planned in position j because
of branching decisions or because it would violate a
constraint. Necessary conditions and learning mech-
anisms based on the CS states are then used to prune
the search. Computational results are presented on
the set of instances proposed in [8].

4. Heuristic approaches for the car sequencing

problem

Different incomplete approaches have been pro-
posed, that leave out exhaustivity, trying to quickly
find approximately optimal solutions in an opportu-
nistic way, e.g., greedy search, local search, genetic
algorithms, and ant colony optimization.

4.1. Greedy approaches

Given a car sequencing problem, one can build a
sequence in a greedy way, starting from an empty
sequence, and iteratively adding a new car at the
end of the sequence with respect to some greedy heu-
ristic function. A first greedy approach has been pro-
posed by Hindi and Ploszaski in 1994 [22]. In 2003,
Gottlieb et al. [20] have proposed and compared
six different greedy heuristics for the car sequencing
problem. The best performing heuristic, among the
six considered heuristics, is based on the ‘‘dynamic
sum of utilization rates’’, i.e., at each step one adds
the car that maximizes the sum of the required
options utilization rates, these utilization rates being
dynamically updated each time a new car is added at
the end of the sequence. Gottlieb et al. have shown
that this kind of greedy construction, when com-
bined with a mild amount of randomization and
multiple restarts, can solve very quickly all instances
of the test suite provided by Lee [25] in CSPLib.

4.2. Local search approaches

The idea of local search is to improve a sequence
by locally exploring its ‘‘neighborhood’’, i.e., the set
of sequences that may be obtained from the current
sequence by performing an elementary transforma-
tion, called a ‘‘move’’. From a given initial
sequence, the search space is explored from neigh-
bor to neighbor until an optimal sequence is found
or until a maximum number of moves have been
performed. Many different local search approaches
have been proposed for solving the car sequencing
problem. Most of them are generic approaches the
performance of which has been illustrated, among
other problems, on the car sequencing problem
[13,25,12,26,28,33]. However, some local search
approaches have been specifically dedicated to this
problem [29,20,32].

Performances of these different local search
approaches have been illustrated on benchmark
instances of the CSPLib [21]. All the recent
approaches proposed in [26,20,28,32,33] have been
shown to be very effective on all these instances.

Local search approaches for solving the car
sequencing problem mainly differ with respect to
(i) the way the initial sequence is constructed, (ii)
the neighborhood considered at each move, and
(iii) the (meta)heuristic considered to choose a move
within the neighborhood.

Construction of the initial sequence. In most cases,
the initial sequence, from which the local search is
started, is a random permutation of the set of vehi-
cles to produce. However, Gottlieb et al. [20] have
proposed to construct this initial sequence in a
greedy way, and they have shown that this signifi-
cantly improves the solution process.

Neighborhood. Different kinds of moves, giving
rise to different neighborhoods, may be considered.
Many approaches only consider Swap moves that
exchange pairs of cars requiring different option
configurations.

However, Puchta et al. [29,20] introduced five
other move types:

• Forward/backward Insert, that removes the vehi-
cle at a position i and inserts it before/after posi-
tion i.

• SwapS, that exchanges two cars which option
requirements are different for one or two options.

• SwapT, that exchanges two consecutive cars.
• Lin2Opt, that reverses the order of the cars in a

subsequence.
• Shuffle, that randomly shuffles a subsequence.

Also, Perron et al. have investigated the capabi-
lities of Large Neighborhood Search (LNS) for
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solving the car sequencing problem. In [32], two
types of neighborhoods are considered, that both
rely on a size parameter s: the first one is defined
by all the permutations of 4s cars that are randomly
and independently chosen; the second one is defined
by all the permutations of a subsequence of s con-
secutive cars. In [33], a third large neighborhood is
considered, that is defined by looking at which vari-
ables are affected through constraint propagation
when one variable is frozen.

Search strategies. Given a neighborhood, differ-
ent (meta)heuristics have been considered for choos-
ing the next move to perform at each iteration.

Both Lee et al. [25] and Davenport et al. [13,12]
have considered the min-conflict hill-climbing heu-
ristic [27] and have proposed to escape from local
minima by increasing the weight of the violated
constraints.

Michel and van Hentenryck [26] have considered
a reactive tabu search approach, where the size of
the tabu list is reactively adapted with respect to
the need for diversification.

In [29,20], a randomly chosen move is evaluated,
and the move is accepted and applied, if it does not
deteriorate the solution quality. Otherwise the move
is rejected and another one is tried on the current
solution.

In the LNS approaches proposed in [32,33], the
large neighborhoods are explored thanks to con-
straint programming, and the first nondeteriorating
move is applied.

Neveu et al. [28] have proposed a new metaheu-
ristic, called IDWalk. This approach introduces
only one parameter, called Max, that determines
the maximum number of neighbors that are consid-
ered before performing every move. At each itera-
tion IDWalk chooses the first nondecreasing
neighbor, and if all the Max considered neighbors
deteriorate the current solution, IDWalk chooses
the best one over them. The Max parameter is auto-
matically determined at the beginning of the search
by performing a few short walks with different pos-
sible values.

4.3. Genetic algorithms

Warwick and Tsang [42] have proposed a genetic
algorithm for solving the car sequencing problem.
This approach takes inspiration from natural evolu-
tion and explores the search space through selec-
tion, cross-over and mutation operators upon a
population of sequences. At each generation,
selected sequences are combined by cross-over oper-
ations; as the created offsprings may not satisfy the
global permutation constraint, they are greedily
repaired; after repair, each offspring is hill-climbed
by a swap function (similar to the one used in local
search approaches). Experiments reported in [42]
show that this approach is able to solve easy
instances of the car sequencing problem, with low
utilization percentages. However, with higher utili-
zation percentages, the number of successful runs
is severely decreased. Cheng et al. [6] propose an
evolutionary computation algorithm to solve a
practical vehicle sequencing problem at Ford Motor
Company, involving painting constraints as in the
problem presented for the ROADEF 2005 chal-
lenge. The authors propose a simple cross-over
operator, called the cross-switching operator, gener-
ating an offspring by swapping the vehicles appear-
ing at a randomly chosen position in the parent
sequences. As in [42], the offsprings are repaired
by mutation operators.

4.4. Ant colony optimization (ACO)

Solnon [37] has proposed a first ACO algorithm
dedicated to permutation constraint satisfaction
problems—the solution of which is a permutation
of a given tuple of values. Performances of this algo-
rithm have been illustrated, among other problems,
on the car sequencing problem.

The basic idea of ant colony optimization (ACO)
[10] is to model the problem to solve as the search
for a minimum cost path in a graph, and to use arti-
ficial ants to search for good paths. The behavior of
artificial ants is inspired from real ants: they lay
pheromone trails on components of the graph and
they choose their paths with respect to probabilities
that depend on pheromone trails that have been pre-
viously laid by the colony; these pheromone trails
progressively decrease by evaporation. Intuitively,
this indirect stigmergetic communication means
aims at giving information about the quality of path
components in order to attract ants, in the following
iterations, towards the corresponding areas of the
search space.

In the ACO algorithm of [37], pheromone is laid
on couples of consecutive cars in order to learn for
promising sub-sequences of cars. This first algorithm
has been improved in [20] by integrating greedy heu-
ristics, and it has been experimentally compared with
the local search approach of [29], showing that local
search is slightly inferior to ACO for small CPU time
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limits, whereas for larger limits both approaches
yield comparable solution quality.

Gravel et al. [18] have proposed another ACO
algorithm for the car sequencing problem, that inte-
grates a local search procedure that is used to
improve the solutions constructed by ants.

5. The ROADEF’2005 car sequencing problem

The car sequencing problem proposed by
RENAULT for the ROADEF’2005 challenge dif-
fers from the standard problem defined in Section
2. Indeed, besides capacity constraints imposed by
the assembly shop, it also introduces paint batching
constraints, and it considers two categories of
capacity constraints to take into account their prio-
rity. These new requirements that are specific to
vehicle production planning and sequencing at
RENAULT are described in Section 5.1, whereas
Section 5.2 formally defines the problem.

5.1. Vehicle production planning and sequencing at

RENAULT

Client orders are sent in real time to the vehicle
plants (see Fig. 1). The daily task of each plant is (1)
to assign a single-day manufacturing period to each
ordered vehicle, taking assembly line capacity con-
straints and client due dates into account. The next
task is (2) to sequence the vehicles inside each produc-
tion day while satisfying at best the requirements of
the production workshops: body, paint and assembly
workshops. The resulting vehicle sequence is the base-
line sequence sent to the workshops.

For the challenge, the following assumptions are
made. Only the paint and assembly workshops are
considered, assuming the body shop is not critical
for the schedule of a production day. The assign-
ment decisions made at step (1) cannot be overruled.

This planning and scheduling process is currently
performed at RENAULT by a software which uses
linear programming for step (1) and simulated
annealing for step (2).
Fig. 1. Vehicle plants
Paint workshop requirements. The main paint
shop objective is to minimize the consumption of
a solvent which is used to clean the paint equipment
at each color change.

This is achieved by sequencing contiguously the
same-colored vehicles. Indeed, gathering the vehi-
cles having the same color into batches and sequenc-
ing the batches in any order minimizes the number
of paint cleanings.

However, each batch of vehicles has to be of lim-
ited size since paint equipment has to be cleaned
periodically, even if no color change occurred. This
batch size limit is a hard constraint, i.e., that cannot
be violated by any feasible solution.

Assembly workshop requirements. The main
objective of the assembly workshop is the work load
balancing of the different work units on the assem-
bly lines. To achieve this purpose, the vehicles
requiring complex operations have to be sufficiently
distant in the sequence. In other words, the density
of these ‘‘difficult’’ vehicles has to be limited to pre-
vent overloading the work units that assemble them.

This is precisely achieved by the p/q ratio con-
straints, see Section 2. In many cases, there is no
sequence allowing to satisfy all the ratio con-
straints for a given manufacturing period. Hence,
as precised in Section 2, ratio constraints are tackled
as ‘‘soft’’ constraints and the objective of optimiza-
tion is to minimize the number of violated ratio
constraints.

Priority classes for assembly workshop require-

ments. While the standard car sequencing problem
only considers ratio constraints (see Section 2),
RENAULT has always considered both the number
of color changes and soft ratio constraint objectives,
for two major reasons. First, according to the RENA-
ULT supply chain strategy, the paint and assembly
workshops process the same vehicle sequence. Sec-
ond, there is a compromise to find between these
two objectives.

As a matter of fact, depending on the labor cost, it
can be advantageous either to best satisfy the ratio
constraints, which allows to limit the workforce level
at RENAULT.
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requirements of the assembly line, or to optimize the
runs of cars of the same color when savings in sol-
vent compensate the overcost due to workload
increase in the assembly shop.

To make the balancing between assembly and
painting easier, two categories of ratio constraints
are defined, the priority ratio constraints and the
nonpriority ratio constraints. The priority ratio con-
straints correspond to critical operations in the
assembly shop whereas the nonpriority ones corre-
spond to less critical operations and are defined
mostly for workload smoothing.

Factories with high labor costs, while putting the
emphasis on color change minimization, can also
define a subset of priority ratio constraints of higher
importance, and another subset of nonpriority ratio
constraints, satisfied at no expense of additional
color changes.

5.2. Optimization problem formulation of the
challenge problem

Counting the ratio constraint violations. The eval-
uation of ratio constraint violations is slightly differ-
ent from the standard definition, in order to express
the fact that, when an option is overconstrained, one
should sequence the vehicles requiring this option as
evenly as possible. This purpose is reflected by com-
puting the ratio constraint violations on gliding sub-
sequences throughout the sequence. If many vehicles
are too close with respect to ratio constraints, many
violations will be observed inside each gliding subse-
quence (instead of only one violation as defined in
the standard car sequencing problem), and these vio-
lations will also be counted several times for all glid-
ing subsequences they appear in.

Another difference with the standard car
sequencing problem is that, for the last gliding sub-
sequence of the current day, the computation for
each ratio is done assuming that the first cars of
the subsequent day are not concerned by the ratio.

Let us consider for example a 1/5 ratio and the
sequence of cars - -XX-X, where an ‘X’ (resp. ‘-’)
denotes a vehicle that requires (resp. does not
require) the option. To evaluate this sequence, we
first consider the two gliding subsequences of size
five, i.e., - -XX-, which is evaluated to 1, and -XX-X,
which is evaluated to 2. Then, we consider the
subsequences XX-X-, X-X- -, and -X- - -, which are
obtained by completing the last gliding subsequence
by cars that are not concerned by the ratio, and
which are respectively evaluated to 2, 1, and 0.
Hence, the whole sequence - -XX-X is evaluated to
6 with respect to a 1/5 ratio constraint.

More formally, we define the number of viola-
tions in a sequence (ru)u2{1, . . . , n} of n vehicles, for
an option oi that have a capacity ratio pi/qi, as
follows:

#violationsððruÞu2f1;...;ng; oiÞ

¼
X

j2f1;...;n�qiþ1g
max 0;

X
k2fj;...;jþqi�1g

rrk i

 !
� pi

 !

þ
X

j2fn�qi;...;n�1g
max 0;

X
k2fj;...;ng

rrk i

 !
� pi

 !
:

Lexicographic multiobjective optimization. The
objective is to build a sequence of vehicles optimiz-
ing the requirements of paint and assembly shops,
which leads to the minimization of three possibly
conflicting objective functions: the number of
violated priority ratio constraints (#PRC), the
number of violated nonpriority ratio constraints
(#NPRC), and the number of color changes
(#CC). As priority constraints have a higher prio-
rity than nonpriority constraints, the three follow-
ing objective hierarchies are observed in the
different RENAULT factories:

minimize #PRC, then #CC, and then #NPRC

or

minimize #PRC, then #NPRC, and then #CC

or

minimize #CC, then #PRC, and then #NPRC

The lexicographic optimization is guaranteed by
penalties 106, 103, and 1 assigned to the first, second,
and third objectives respectively.

Formal definition of the challenge problem. The
RENAULT car sequencing problem is defined by:

• A standard car sequencing problem instance
(V,O,p,q, r), as defined in Section 2.

• Two subsets OP and ONP of O such that OP (resp.
ONP) contains the set of options having priority
(resp. nonpriority) ratio constraints.

• A set of colors C and a function c:V! C that
associates a color ci to each vehicle vi 2 V.

• A batch size limit B 2 N.
• The weights wCC, wPRC, and wNPRC of color

changes, priority and nonpriority ratio constraint
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violations respectively, where {wCC, wPRC,
wNPRC} is a permutation of {1,103,106} such that
wPRC > wNPRC.

• A sequence (ru)u 2 {�k+1, . . . , 0} that contains the
last k vehicles sequenced during the previous
day, where k ¼ maxoi2Oqi � 1. This enables to
take into account the previous production day
when computing the number of constraint viola-
tions and color changes.

A feasible solution is a sequence r =
(ru)u 2 {1, . . . , jVj} that is a permutation of V, and that
satisfies the batch size limit, i.e., that does not con-
tain more than B consecutive cars with a same color.

The cost of a feasible solution r is the weighted
sum

costðrÞ ¼ wCC �#CCðrÞ þ wPRC �#PRCðrÞ
þ wNPRC �#NPRCðrÞ;

where

• #CC(r) is the number of color changes in r.
When evaluating this number, the last car
sequenced during the previous day (r0) is consid-
ered, i.e.,

#CCðrÞ ¼ jft 2 f0; . . . ; n� 1g; crt 6¼ crtþ1
gj:

• #PRC(r) is the number of violated priority ratio
constraints in the sequence composed of the last
k vehicles of the previous day followed by the
vehicles of r, i.e.,

#PRCðrÞ ¼
X

oi2OPR

#violationsððruÞu2f�kþ1;...;jV jg; oiÞ:

• #NPRC(r) is the number of violated nonpriority
ratio constraints in the sequence composed of the
last k vehicles of the previous day followed by the
vehicles of r, i.e.,

#NPRCðrÞ¼
X

oi2ONPR

#violationsððruÞu2f�kþ1;...;jV jg;oiÞ:

6. Description and results of the ROADEF’2005

challenge

The above-described car sequencing problem was
already solved in a satisfactory manner in the
RENAULT factories through a software based on
simulated annealing [5]. However, during the last
years, this problem became critical since the com-
pany made the strategic decision of enforcing at
the workshop level a strict respect of the baseline
sequence which is computed 6 days before the actual
production.

Before this policy, it was possible to sort the vehi-
cles at the paint shop entrance to improve color runs
without considering the ratio constraints. The
sequence was then rearranged at the assembly shop
entrance to minimize the ratio constraint violations.
Such local rearrangements are no more allowed and
the optimization of the baseline sequence is now a
key issue.

In such a context the ROADEF challenge repre-
sented for RENAULT a real opportunity for evalu-
ating several possible car sequencing algorithms.

6.1. Data instance sets and challenge phases

The data provided to the challenge participants
are all issued from RENAULT factories. However,
to test new possible configurations, the ratio con-
straints of some instances have been tightened and
the objective hierarchies of some others have been
changed.

All candidates were also provided with the solu-
tions found by the simulated annealing software
used by RENAULT.

Three instance sets were used for the challenge:

A set: The first set (made of 16 instances) served
during the challenge qualification phase. It was
built from the data of 6 different factories and
contains from 1 to 2 instances per factory. Based
on the results of the teams on this first set, an
intermediate ranking was issued. Each candidate
team was informed of all these results.
B set: The second set (made of 45 instances) was
provided to the qualified teams so they would be
able to improve and tune their methods. The set
was built from data coming from 10 factories.
Each instance has to be solved for each of the
three possible objective hierarchies. The interest
for RENAULT was here to test the algorithms
in the context of both current and targeted shop
configurations. Furthermore, some required
ratios were overconstrained to test the ability of
the methods to smoothen the violations of
unsatisfiable constraints.
X set: The last set (made of 19 instances)
remained unknown from the teams until the
end of the challenge. It was used by the jury to
issue the final ranking. This set reflects the data
of all the 19 RENAULT and DACIA assembly



Table 2
The classical car sequencing instances

Inst. # Cars # Options # Config. p/q Ratios

CSP lib [21] 100–200 5 17–30 1/(2,3,5),
2/(3,5)

Gravel et al. [18] 200–400 5 19–26 1/(2,3,5),
2/(3,5)
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lines in Europe and Mercosur, each instance rep-
resenting a production day on one of these sites.

In Table 1, we give the characteristics of the X
instances. For comparison purpose, we give in
Table 2 the characteristics of the CSPLib instances
[21] and the instances proposed by Gravel et al.
[18] (which do not consider priorities nor colors).
The tables show clearly that the industrial instances
are much larger and can be useful to reveal the sca-
lability of state-of-the-art methods. Note also that
ratio constraints of the X instances are much less
regular than the ones of the CPSLib, and that q val-
ues are often much larger. This last point is likely to
increase considerably the difficulty of the problem,
since even counting the number of violated con-
straints can be a nontrivial task.

6.2. Challenge conditions and ranking process

For both the qualification and final phases, the
candidates had to send their software either as an
executable file compatible with the target computer
architecture (Pentium IV – 1.6 Ghz and 1 Gb RAM)
or as a C or C++ file. The tests were run by
RENAULT allocating for each program 5 runs of
Table 1
The RENAULT instance set X

Inst. # Cars # Ratio # Colors

022 704 3 + 9 13
023 1260 5 + 7 13
024 1319 7 + 11 15
025 996 6 + 14 19

028_1 325 9 + 17 15

028_2 65 1 + 5 4
029 780 4 + 3 14
034_VP 931 3 + 5 10
034_VU 231 6 + 2 7
035_1 90 1 + 0 6
035_2 376 2 + 0 7
039_1 1247 1 + 11 15
039_3 1037 2 + 10 17

048_1 519 6 + 16 13
048_2 459 8 + 12 13
064_1 875 9 + 2 13
064_2 273 6 + 0 12
655_1 264 4 + 1 9
655_2 219 4 + 0 7

Each row displays successively the instance name, the number of vehicles
number of colors, the number of configurations, i.e., the number of clas
the different p/q ratio values.
10 minutes and the results for each candidate were
obtained by an average over the 5 runs.

The initial ranking method was the following:

• For each instance, set the mark to the obtained
objective value.

• For each instance, normalize the mark with the
best and the worst marks:

markteam �markworst

markbest �markworst

:

• Compute for each team the average mark over all
instances.

However it appeared that the results of the best
teams were so close that this method turns out to
be inadequate. Hence, it has been decided to refine
# Config. p/q ratios

84 1/(3,4,5,6,10), 2/3, 5/6, 10/15
202 1/(2,3,5,6,7,8,10,20)
275 1/(2,3,4,6,7,10,13,15,20), 3/5, 6/7
235 1/(2,3,4,6,7,9,10,18,20,28,76),

2/3, 5/8, 17/30
150 1/(2,3,4,6,7,8,10,12,13,16,18,20,25,39),

1/(46,91,136), 3/5, 3/4, 4/5
10 1/(2,3,5,6,14)
73 1/(2,3,6,7), 3/4, 39/43
24 1/(2,3,5,6,7,10,29,65)
64 1/(2,4,5,13,17,22), 3/5
11 1/2
19 1/2

328 1/(2,4,6,7,8,13,19,20,56,297)
156 1/(3,5,8,14,16,19,25,38,47,247),

12/60, 41/60
209 1/(1,2,3,4,5,6,7,8,9,10,18,137,274),2/3
141 1/(2,3,4,5,6,7,8,9,10,20,25,50)
156 1/(2,4,5,8,9,30,10,100), 2/3, 4/9
42 1/(2,5,10,20,100), 8/10
19 1/(2,5,15)
18 1/(6,9,16), 2/3

, the total number of priority and nonpriority ratio contraints, the
ses of vehicles of different color and/or option requirements, and
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the mark computation as follows. A ‘‘musical
chairs’’ principle has been applied for the mark
computation. After each evaluation round, the last
ranked team was eliminated for the next round.
The procedure stops when only three teams remain.

6.3. Synthesis of the proposed methods

We make a synthesis of the methods proposed by
the candidate teams, in terms of the families of pro-
posed algorithms, of some common principles used
by most methods (greedy algorithm and neighbor-
hood operators), multiobjective optimization,
numerical results and implementation issues.
Table 3
Methods proposed at the qualification stage

Algorithm # Teams

Greedy heuristic (GH) All
Simulated annealing (SA) 5
Tabu search (TS) 7
Variable neighborhood search (VNS) 4
Large neighborhood search (LNS) 2
Local search (LS) 5
Iterated local search (ILS) 2
Genetic algorithm (GA) 1
Ant colony optimization (ACO) 1
Integer linear programming (ILP) 1
Constraint programming (CP) 1

Table 4
Methods and ranking of finalist teams

Rank Algorithm

1 LS
2 VNS + ILS

3 SA
4 SA
5 SA
6 LS
7 TS + ILS
8 VNS + SA

9 TS
10 LS
11 ACO + LS + TS/VNS

12 LS
13 GA
14 SA
15 LS
16 CP + LNS
17 TS
18 TS

See meaning of acronyms in Table 3.
6.3.1. Families of algorithms

Table 3 gives a classification of all the methods
proposed by the participants of the qualification
stage, and Table 4 gives the methods proposed by
the finalist teams, listed in the final ranking order.

The number of methods is larger than the num-
ber of candidates since some teams combined sev-
eral algorithms. The second team in the final
ranking implemented six different greedy heuristics
and several combinations of Variable and/or Iter-
ated Neighborhood Search, depending on the con-
sidered objective hierarchy.

The predominance of local search methods has to
be underlined. A great attention has been paid by
the candidates on the definition of neighborhood
operators and on the design of space search strate-
gies such as the balance between intensification
and diversification and/or the escape from local
optima. Sparcer methods such as AG, ACO and
ILP have however shown their potential on the
car sequencing problem.

The case of the winner team (Estellon, Gardi and
Nouioua) is worth mentioning since they proposed
a large neighborhood search method (based on
ILP) for the qualification phase which obtained lim-
ited results due to the short runtime limitation of
10 minutes. For the final phase they switched to a
fast local search method.
Team

B. Estellon, F. Gardi and K. Nouioua (France)
D. Aloise, T. F. Noronha, C. Rocha, C. C. Ribeiro
and S. Urrutia (Brazil)
O. Briant, D. Naddef and G. Mounié (France)
A. Bloemen (The Netherlands)
E. Kuipers (The Netherlands)
H. Gavranovic (Bosnia-Herzegovina)
J.-F. Cordeau, G. Laporte and F. Pasin (Canada)
M. Riesler, M. Chiarandini, L. Paquete,
T. Schiavinotto and T. Stützle (Germany)
D. Craciunas, M. Gendreau and J.-Y. Potvin (Canada)
G. Pawlak, M. Rucinski, P. Piechowiak and M. Plaza (Poland)
M. Gravel, C. Gagné, W. L. Price, M. Krajecki
and C. Jaillet (Canada-France)
T. Benoist (France)
A. Jaszkiewicz, M. Kubiak and P. Kuminek (Poland)
R. Montemanni (Switzerland)
D. G. Bonizzoni and A. Pinciroli (Italy)
Y. Caseau (France)
N. Zufferey and M. Studer (Canada-Switzerland)
B. Hu and G. W. Klau (Austria)



C. Solnon et al. / European Journal of Operational Research 191 (2008) 912–927 923
6.3.2. Greedy heuristics

As expected, all methods build the initial solution
with a fast and simple method when the objective to
minimize the number of color changes is considered
first since the problem is polynomial.

The vast majority of proposed works also devel-
oped greedy heuristics to generate good initial solu-
tions when the priority ratio constraint violation
objective is considered first. Usually the so-obtained
first initial solution was better than the solution pro-
posed by RENAULT. We have to note that one
team used Constraint Programming to build such
an initial solution and that CP has not been used
by any other team in this challenge.
6.3.3. Neighborhood operators
The best results were obtained by using the

neighborhood operators described in Section 4.2,
and some variants such as (the following list is not
exhaustive):

Group swap: Swap two subsequences.
K swap: Swap K couples of vehicles.
forward/backward group insert: Insert a subse-
quence of vehicles after/before a given position j.
Invert same type: Reverse a subsequence where
the first and last vehicles either have the same
color, are equivalent in terms of priority ratio
constraints, or are the first or last vehicles of runs
of identical (or distinct) colors.
Table 5
Best results on instance set X

Inst. Obj. Teams

022 C_P_NP 1,2,3,5,6,7,8,10,12,13
023 P_C_NP 1
024 P_C_NP 1
025 P_NP_C 1
028_1 P_NP_C 2
028_2 P_NP_C 1,2,3,4,5,6,7,9,10,11,12,13
029 P_C_NP 4
034_VP P_C_NP 12
034_VU P_C_NP 2
035_1 C_P 1,2,3,4,5,7,9,10,11,12,15,16,
035_2 C_P 1,2,3,4,5,7,9,10,11,12,13,17
039_1 P_C_NP 1
039_3 P_C_NP 3
048_1 P_C_NP 5
048_2 P_C_NP 1
064_1 P_C_NP 1
064_2 P_C_NP 1,2,3,4,6,7,10,11,12
655_1 P_C_NP 1,2,3,4,5,6,7,9,10,11,13,14,1
655_2 P_C_NP 1,2,6,10
Taking two extremes, the ‘‘Shuffle’’ operator was
used carefully since its evaluation requires exponen-
tial times. However it permits a good diversification
of the search. On the contrary, the challenge win-
ners (Estellon, Gardi and Nouioua) reported that
the simple ‘‘SwapT’’ operator offers a good compro-
mise for solution improvement (while avoiding large
perturbations) and CPU time since its evaluation is
quite fast.
6.3.4. Multiobjective characteristics and numerical

results

Most of the teams adopted the standard strategy
for lexicographic multiobjective optimization. (At
step 1 optimize the first objective. At each step
s > 1 optimize objective s while fixing the obtained
values for objectives s � x, x P 1.) The allocated
CPU time was equally distributed among the three
steps.

The differences between the best results were sig-
nificant only on the second and third objectives.
However, these differences are important in practice
especially when the second or third objective is the
number of color changes which yields significant
savings in solvent.

Table 5 gives the best obtained results on the X

instance set. For each instance, the teams that
obtained the best result are identified by their global
rank (see Table 4). The objective order is given in
the first column, where P denotes the priority ratio
P NP C

2.00 3.00 12.00
0.00 66.00 192.40
0.00 6.00 337.00
0.00 160.00 407.60

36.00 341.40 95.40
0.00 0.00 3.00
0.00 98.40 110.20
0.00 794.80 55.20
8.00 35.80 87.00

17 10.00 0.00 5.00
56.00 0.00 6.00
0.00 239.00 69.00
0.00 30.00 231.00
0.00 1005.60 196.00

31.00 1116.20 76.80
61.00 29.80 187.20
0.00 0.00 37.00

6,17 0.00 0.00 30.00
153.00 0.00 34.00
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constraints, NP denotes the nonpriority ratio con-
straints, and C denotes the number of colour
changes. Objective values are averaged over 5 runs
for each instance. All algorithms are robust and
yield low standard deviations.

One has to observe that the results are very close.
They all obtain the same value for the first objective
and, for some instances, reach the same values for
the three objectives. As said above, this led to use
the musical chairs selection method to obtain the
final ranking.

Note that the nonfunctioning of the third team
code on instance 024 was highly penalizing for the
final ranking.

6.3.5. Implementation issues

Due to the short time limit and the large size of
some instances, the implementation issues were cru-
cial in this challenge. The winner team implemented
for that purpose optimized evaluation techniques of
the neighborhood for each operator which allow
them to perform on average 170 millions neighbor-
hood evaluations during the 10 minutes of allocated
CPU time. The team that has been ranked second
(Aloise, Noronha, Rocha, Ribeiro and Urrutia)
defined special data structures to evaluate each
exchange move in O(m) where m is the number of
ratio constraints.

7. Conclusion and presentation of the feature issue

The ROADEF’2005 Challenge was particularly
successful and brought a comprehensive insight on
the proposed methods. The heuristic approaches
described in Section 4, i.e. greedy approaches, local
search methods, genetic algorithms, and ant colony
optimization methods, were all successfully adapted
to the specificity of this problem.

It could be surprising at first sight that no con-
straint programming based method were competing
after the qualification phase. Indeed, Car Sequenc-
ing was a traditional benchmark problem for con-
straint programming as stated in Section 3. This is
partially due to the short runtime requirement
(10 minutes) and the large-sized real-life industrial
instances, compared to the much smaller CSPlib
instances. Some candidates report that they have
tested CP and ILP-based approaches that could
not obtain satisfactory results after several hours
of computational times. Actually, a promising
research direction could be to integrate exact and
heuristic approaches, that have complementary
capabilities: exact approaches such as CP and ILP
may be used to prove new bounds whereas heuristic
approaches may be used to provide exact
approaches with good initial solutions that may be
used to prune the search space more efficiently.

The expectations of RENAULT were fully met:
because of the great potential savings, the winner
team’s algorithm has been integrated in RENAULT
operational software and rolled out in European
pilot factories in November 2005. The roll out in
all RENAULT factories worldwide has been com-
pleted by the first semester of 2006.

Interesting issues are also raised on the potential
balance between paint and assembly shops. Some
assembly constraints could be indeed further
relaxed to obtain large solvent savings.

Also, practical extensions, which were not pre-
sented during the challenge for sake of simplica-
tions, will be studied on the near future. These are:

• Predefined positional windows for some vehicles.
Such hard constraints are necessary for quality
control.

• ‘‘crossed ratio constraints’’. Such ratios concern
two different technical features (A) and (B). For
instance, ratio constraint ‘‘A B 1/N’’ means that
any vehicle with feature A must be distant of at
least N � 1 positions from any vehicle with fea-
ture B.

• ‘‘Assembling several sequences into a single one’’.
In some factories several paint shops work in
parallel before the corresponding vehicle
sequences merge for the assembly shop. It is
therefore necessary to compute a sequence per
paint shop. Moreover, some vehicles have to be
processed by a specialized paint shop whereas
others can be processed on any paint shop, which
introduces assignment problems.

• Decision support for operators. Which ratio con-
straints should be relaxed to improve signifi-
cantly the number of color change objective?

The fourth ROADEF challenge confirms and
strengthens the international scope of this competi-
tion. Fifty five inscriptions were received from 15
different countries. No less than 27 programs were
submitted at the end of the qualification phase.
For the final stage, 12 teams of 7 countries (Bos-
nia-Hercegovina, Brazil, Canada, France, Ger-
many, The Netherlands, Poland) were invited to
present their results during the ROADEF’2005 con-
ference in Tours (France).
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Furthermore, the quality of the submitted meth-
ods, in particular for junior teams, reached an
exceptional level. For the first time two junior teams
reached the first and second rank in the general final
ranking.

The ROADEF challenge demonstrated once
again its ability to reach its double objectives pro-
moting the operations research methods for solving
industrial NP-hard problems, and allowing con-
versely academic researchers to confront their ideas
with real applications. All the details on the ROA-
DEF challenges can be consulted on the ROADEF
web site <www.roadef.org>.

We are finally honoured to introduce the nine
papers selected for the EJOR feature cluster on
the car sequencing problem.1 Six papers have been
written by the participants of the challenge among
which the first three teams. One paper presents
results on the challenge instances although the
authors did not participate to the competition.
Two papers present novel methods for the standard
car sequencing problem.

• Estellon et al. [14] describe the very fast local
search method that allowed them to win the chal-
lenge and compare its results with the very large
neighborhood search method that they have
implemented in the qualification phase. The win-
ning method is a first-improvement descent heu-
ristic using a variety of neighborhood operators
stochastically, where a meticulous attention is
paid to speed up the neighborhood evaluation
through the use of incremental calculations.

• The paper of Cordeau et al. [7] investigates the
use of iterated tabu search. The method was
ranked seventh. It aims at alternating intensifica-
tion phases using standard tabu search and diver-
sification phases based on perturbations.

• In complement with the challengers methods,
generally aiming at finding the best possible fea-
sible solutions, Benoist [1] proposes lower
bounds and optimality proofs for the problem.
The lower bounds are based on pseudo-polyno-
mial subproblems (including an exact algorithm
of complexity O(q) for the single ratio problem),
1 We draw the reader’s attention to the paper of Gagné, Gravel
and Price published in another issue of the European Journal of
Operational Research [19] presenting the extension of their ant
colony optimization method proposed for the standard car
sequencing problem [18] to the ROADEF’2005 challenge prob-
lem. Their method was ranked eleventh.
also used to design the so-called star relinking
heuristic which obtained the 12th position.

• Gavranović [16] presents a heuristic based on
variable neighborhood and tabu search that
was ranked sixth. He also exhibits an optimal
algorithm for the single ratio problem, proposes
a data-structure to speed up penalty evaluation
for ratio constraints and exploits the concept of
spelling motifs to improve the number of batch
colors.

• Ribeiro et al. [34] design a set of heuristics mostly
based on variable neighborhood and iterated
local search. Quick neighborhood evaluation
and ad-hoc data structures are also a key issue
for their method that was ranked second.

• Briant et al. [2] describe a simulated annealing
method in which the probabilities of acceptance
are computed dynamically. Among the possible
moves, the probabilities tend to favor the ones
having the best success rate so far. The method
was ranked third.

• Prandtstetter and Raidl [31] propose a hybrid
variable neighborhood search method, outside
the challenge contest, based on integer linear pro-
gramming to solve the challenge problem.
Although their method does not reach the results
of the best challenge participants, they obtained
tight bounds and optimality proofs on some
instances as well as improved results on the CSP-
lib compared to state-of-the art methods. This
underlines the potential of pursuing research on
ILP-based methods for car sequencing.

• Fliedner and Boysen [15] propose a new ad-hoc
branch and bound method for the standard car
sequencing problem. The method makes use of
dominance rules cleverly exploiting the problem
structure.

• Solnon [38] presents an ant colony optimization
algorithm to solve the standard car sequencing
problem. The method is based on a new phero-
mone structure aiming at identifying promis-
ing sequences of critical cars to enhance the search.
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[18] M. Gravel, C. Gagné, W.L. Price, Review and comparison of
three methods for the solution of the car-sequencing prob-
lem, Journal of the Operational Research Society 56 (11)
(2005) 1287–1295.
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