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1 Introduction

This paper deals with the problem of scheduling technicians and interventions for telecommuni-
cations. This optimization problem is proposed by France Telecom and it is the subject of the
ROADEF Challenge 2007 [1]. This is a real life scheduling problem with many constraints of
various types, the most important of which are:

— team constraints — technician teams are formed each day and should not change during the
day;

— competence constraints each intervention has competence requirements and can only be done
by a sufficiently competent team;

— precedence constraints an intervention cannot start before its predecessors are finished.

At first glance the problem looks like a multi-dimensional bin packing problem, but it is much
more difficult because of the above mentioned constraints and the classical bin packing algorithms
are not applicable to it.

This paper presents a heuristic scheduling algorithm based on iterative solving of mixed integer
programming (MIP) models [2]. Each model forms a team and assigns interventions to it. Due to a
limited number of pages, we do not give a formal description of the problem, the reader is referred
to [3] for such description. In this paper we use the same notations as in [3]. The only difference is
that we use ¢ to index the interventions and d to index the domains (and not I and ¢ as in [3]).

2 Scheduling algorithm

Theoretically, it is possible to formulate a MIP model which constructs a schedule of minimal score
subject to the problem’s constraints. But this kind of model will contain so many variables and
constraints that it will not be solvable even for problem instances of small size. That is why we
chose to construct the schedule day by day. Each day we select a subset of interventions that are
not scheduled in the previous days and that can be scheduled using the available technicians for
the day. This local vision has obvious disadvantages, but at least the problems that we need to
solve for each day are easier.

Our first approach was to formulate a MIP model for each day. This model constructs teams
using the available technicians for the day and assigns to each team interventions. It maximizes the
total cost of the scheduled interventions. The cost of each intervention depends on its priority, its
execution time and its competence requirements. The iterative solving of this model works well for
the small instances of set A, but for the bigger instances from set B the size of the model becomes
enormous and it cannot produce solutions in reasonable time.

That is why we decided to go one more level down and to construct the schedule for each day
team by team. Once again we use a MIP model to select a subset of available technicians and to
assign interventions to this subset. This sacrifice is payed by the fact that the obtained MIP models
are very simple. In this way we can construct a complete schedule very quickly (time of order 0.01
s for the smallest instances up to 2-3 min for the biggest ones on the test machine). Introducing a
random factor, we can construct many different schedules and retain the best of them.
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2.1 Team scheduling model

Suppose that we have constructed a schedule for days 1,...,j—1 and that some teams are already
formed on day j. Now we want to form the next team for day j and assign interventions to it. Let
7T be the set of available technicians (working on day j and not participating in the previously
formed teams for this day). Let Z be the set of available interventions (not hired and not scheduled
until now). We also suppose that Z contains only interventions that can be done by the technicians
in 7. If T = (), nothing more can be done on this day and we can skip to day 7+ 1. That is why we
consider the case Z # (. Let 7(d,n) = {t € T : C(t,d) > n} be the set of available technicians of
level at least n in domain d.

We introduce binary variables x;, t € 7 and y;, ¢ € Z. The variable z; is 1 iff technician ¢ is
selected in the next team and y; is 1 iff intervention ¢ is assigned to this team. The new team is
formed according to the solution of the following model.

Minimize Z Ty — Z Bivi (1)

teT €T
subject to > T(i)y: <120 (2)
i€
> @ >R(i.dn)y VieZ,dn (3)
teT (d,n)
xy € {0,1} VieT (4)
yi € {0,1} VieT (5)

The constraint (2) says that the total execution time of the selected interventions must not
exceed the working time of the team. The constraints (3) ensure that the team has at least the
required number of technicians in each competence domain and level for each selected intervention.

The goal of the objective function (1) is to minimize the idle resources in the team. The first
term represents the resources used and the second one the work done. There are different ways
to choose the coefficients a; and ;. This choice is crucial since it determines the quality of the
obtained solution.

For example, let oy = 120 and 8; = T'(i) x H(i), where H(i) = maxq{R(i,d,1)} is a lower
bound on the number of technicians needed to do intervention 4. Figure 1 explains the meaning
of this objective function. Consider the second team composed by technicians 2, 3, 4 and 5. The
area of the team’s rectangle is 120 x 4 = 480. The team executes interventions 18, 19, 16, 11 and
5. Each intervention is represented by a gray rectangle of width 7'(¢) and height H (7). The total
area of the rectangles of these interventions is 60 x 4 +15 x4 4+ 15 x 1 + 15 x 1 4+ 15 x 4 = 390.
The objective function seeks to minimize the empty (white) area in the team’s rectangle. For the
second team this area is 480 — 390 = 90, while for the first and the third teams it is 0.
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Fig. 1. Example of scheduling of day 1 for instance 3 from set A

Of course in this example the objective coefficients are too simple to work well. We have to
multiply the §; coefficients by weight factors depending on the priority of each intervention. In this
way the interventions of higher priority will be selected earlier. Furthermore, the model may select
a team which is too competent for the selected interventions and leave less competent technicians
for the next teams in the same day. After several experiments we retained the following objective
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coefficients:

ap =120 x (1 + %) X IZnEaZX{PrioCoef(i)}, Bi = T(i) x H(i) x PrioCoef(i) (6)
where PrioCoef(i) = 106-2xPri°(?) D is the number of domains and N is the number of levels. In
this way an intervention of priority p is 100 times more expensive than the same intervention of
priority p + 1 and a technician having full competences in all domains costs twice as much as a
technician having level 1 in one domain and level 0 in all other domains. These coefficients seem to
work better than the other variants we tested, but a more detailed experimental study is needed
in order to determine appropriate values of a;z and §;. A finer estimation of the costs taking into
account the competences might give better results.

A small fault of our model is that it might have a trivial zero solution. To avoid this trivial
solution we choose a random intervention ¢* € Z among these of highest priority and fix the y;-
variable to one. The side effect of this random choice is that we can generate different schedules
and retain the best of them.

2.2 Assigning starting times to the interventions

The iterative solving of the MIP model from the previous section produces teams for day j and
affects interventions to each team. Now we have to determine the starting time of each intervention
scheduled on day j. We use the following MIP model to find the starting times:

Minimize 287 + 141 + 4713+ 74 (7)
subject to  T'(k) < s; — s + 1202, <120 —T(i) Vi, k : d(i) =d(k) =7, a(i) = a(k) (8)
s+ T(k) <s; Vi, k : d(i) =d(k) =7, k € Pred(i) (9)
i+ T(i) < Tprio(s) Vi od(i) =3 (10)
Tp < T4 p=123 (11)
0<s;<120-T(i) Vi o d(i) =3 (12)
zir, € {0,1} Vi, k : d(i) =d(k) =7, a(i) = a(k) (13)

In this model the continuous variable s; is the start time of intervention i. Constraints (8) ensure
that interventions affected to the same team do not overlap. When the binary switch variable z;x
iz zero, (8) becomes s + T(k) < s; and when z;; = 1 it transforms to s; + T'(i) < s. Constraints
(9) ensure that 4 is not started before its predecessors are finished. The continuous variables 7,,
p = 1,2,3 represent the end time of the last intervention of priority p and 7, is the end time of
the last scheduled intervention for day j. Of course 7, has some meaning only if there are no more
unscheduled interventions of priority p. Otherwise we can set the objective function coefficient of
Tp tO zero.

2.3 Precedence constraints

The method described in the previous sections generates schedules that may violate some prece-
dence constraints. In this section we describe a procedure that checks and repairs such violations.
This procedure is applied at the end of each day and ensures that the obtained schedule respects
the precedence constraints.

We define the chain length of an intervention in the following way

0 if ¢ is scheduled before day j

14
T(i) + max{ChainLen(k) : k € Pred(i)} otherwise (14)

ChainLen(i) = {

It is clear that if ChainLen() > 120 then ¢ cannot be scheduled on day j. We can use this simple
test to exclude from the set 7 all the interventions with too long chains of unscheduled predecessors
before starting the scheduling of day j. Another simple thing to do is to encourage the selection
of interventions with successors by the model (1)-(5). We do this by multiplying 3; by two for all
1 having successors of the same priority. Although these precautions, some precedence constraints
may still be violated after constructing the schedule for day j. The possible problems are:
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— Some intervention 4 is scheduled on day j but some k € Pred(¢) is not scheduled yet.
— All interventions scheduled on day j have their predecessors scheduled, but some of their
predecessors are also scheduled on day j and the problem (7)-(13) is infeasible.

A radical way to avoid these problems is to exclude from the set Z the interventions that
have unscheduled predecessors. This means that two interventions in precedence relation cannot
be scheduled on the same day. This solution is too restrictive and produces quite sparse schedules.
Instead of it we use the following iterative algorithm:

1. Exclude from Z the interventions with chain length more than 120. Multiply by 2 the (-
coefficients of the interventions that have unscheduled predecessors of the same priority.

2. Construct a schedule for day j by iteratively solving the problem (1)-(5).

3. If there are interventions scheduled on day j with unscheduled predecessors, pick one of them
randomly, exclude it from 7 and go to step 2.

4. Solve the problem (7)-(13). If it is feasible, stop.

5. Pick random intervention scheduled on day j which have predecessor scheduled on day j.
Exclude it from Z. Go to step 2.

This approach slows down the scheduling algorithm because the same day may be scheduled
many times, but it is less restrictive than the obvious solution of excluding all the interventions
with unscheduled predecessors.

2.4 Hired interventions

Some interventions can be subcontracted to external companies. The constraint to respect is that
the total cost of such hired interventions must not exceed the abandon budget A. In our algorithm
the choice of hired interventions is as simple as solving the following knapsack problem:

Maximize Z Bivyi (15)
subject to Z ay; <A (16)
yi € {0,1} Vi (17)

where a; is the abandon cost of intervention i and the coefficients [3; are the same as in (6). The
binary variable y; is one iff the intervention i is abandoned. Only the interventions that have no
successors are considered. This knapsack problem is solved before the scheduling algorithm starts.
The selected interventions are supposed scheduled on day -1 and are not considered further. We
have chosen this approach because it is easy to implement but this is not at all the best thing to
do. A more intelligent approach would consist in dynamically selecting the interventions to hire in
the day when the last intervention of priority p is scheduled (p =1,...,4).

3 Experimental results

Our algorithm is implemented in C. To solve the MIP models we use CPLEX 10 callable library
[4]. The experiments presented in this section were executed on the test machine provided by
France Telecom and ILOG. We used the test instances provided by the organizers of the ROADEF
Challenge. For each instance we executed 10 runs. The time of each run was limited to 20 minutes.
Note that this is real time (not CPU time) and the machine was available to all participants in
the challenge during the experiments. Table 1 presents summary results of these runs. For each
instance we give the best and the worst score obtained, as well as the average and the standard
deviation of the score over the 10 runs.

For comparison we also give the reference scores provided by the organizers. We can see that
in 18 out of 20 cases even the worst score obtained by our program is better than the reference
score. Of course, the reference scores are just examples of valid scores, not of “good” scores, but
for the moment this is the only base of comparison we have.

We can also observe the robust behavior of our algorithm. Although this is a randomized
algorithm, the results obtained at different runs are close (see the standard deviation line). For
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Table 1. Summary results of 10 runs (the time of each run is 20 min)

set A 1 2 3 4 5 6 7 8 9 10
ref 2490 4755 15840 14880 41220 30090 38580 26820 35600 51720
min 2625 4755 13560 13620 33480 21915 32220 20100 28740 40140
max 2625 4755 13560 13620 33480 24255 32220 22020 30420 40140
avg 2625 4755 13560 13620 33480 23397 32220 20790 29513 40140
std.dev 0 0 0 0 0 824 0 569 711 0
set B 1 2 3 4 5 6 7 8 9 10
ref 69960 34065 34095 50340 150360 47595 56940 51720 44640 61560

min 44160 18180 19245 43905 119340 32850 40260 37920 33360 42960
max 45600 21555 20700 69105 123240 35115 41700 40080 35040 46320
avg 44904 19827 20199 52907 121332 33513 40944 39372 33996 44544
stddev 568 1275 548 9492 1343 897 609 1007 614 1185

7 instances, we always obtain the same result. We explain this robustness by the fact that our
algorithm generates many schedules per run and gives the best of them as solution. The only
exception is instance 4 from data set B. The big standard deviation is due to 3 outliers: 57210
and 69105 (2 occurrences). A possible explication of this fact is that the test machine was used by
other participants during these runs.

4 Conclusion

This paper presents a step by step heuristic algorithm for the problem of scheduling technicians and
interventions for telecommunications. At each step we form a team using the available technicians
and assign interventions to this team. Our algorithm does not seek to minimize directly the score
function. Instead, we try to keep the technicians as busy as possible, hoping that in this way the
interventions will be done earlier. The idea of our algorithm is well resumed by the proverb “Never
put off till tomorrow what can be done today”. The main disadvantage of this greedy approach is
that bad choices in the earlier days may lead to idle resources in the later days. The advantage
is that the schedules are constructed quickly and with random choices, so we can generate several
schedules and choose the best of them.

This paper presents a preliminary version of our work. There are a lot of things to be improved
in our algorithm. A better choice of the objective coefficients of the team scheduling model can
be done. The precedence constraints can be managed in better way in order to avoid rescheduling
of the same day and to accelerate the algorithm. Some improvement procedures can be added for
the days containing the last intervention of each priority level. Hired interventions may be selected
dynamically, during the scheduling and not before it, etc.

We would like to thank the organizers of the ROADEF Challenge 2007 for proposing this
interesting and exciting industrial optimization problem. We have been working on it with a lot of
pleasure. Special thanks to Van-Dat Cung and Anne-Marie Bustos for the technical help and for
answering our (sometimes stupid) questions.
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