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tionThis paper deals with the problem of s
heduling te
hni
ians and interventions for tele
ommuni-
ations. This optimization problem is proposed by Fran
e Tele
om and it is the subje
t of theROADEF Challenge 2007 [1℄. This is a real life s
heduling problem with many 
onstraints ofvarious types, the most important of whi
h are:� team 
onstraints � te
hni
ian teams are formed ea
h day and should not 
hange during theday;� 
ompeten
e 
onstraints � ea
h intervention has 
ompeten
e requirements and 
an only be doneby a su�
iently 
ompetent team;� pre
eden
e 
onstraints � an intervention 
annot start before its prede
essors are �nished.At �rst glan
e the problem looks like a multi-dimensional bin pa
king problem, but it is mu
hmore di�
ult be
ause of the above mentioned 
onstraints and the 
lassi
al bin pa
king algorithmsare not appli
able to it.This paper presents a heuristi
 s
heduling algorithm based on iterative solving of mixed integerprogramming (MIP) models [2℄. Ea
h model forms a team and assigns interventions to it. Due to alimited number of pages, we do not give a formal des
ription of the problem, the reader is referredto [3℄ for su
h des
ription. In this paper we use the same notations as in [3℄. The only di�eren
e isthat we use i to index the interventions and d to index the domains (and not I and i as in [3℄).2 S
heduling algorithmTheoreti
ally, it is possible to formulate a MIP model whi
h 
onstru
ts a s
hedule of minimal s
oresubje
t to the problem's 
onstraints. But this kind of model will 
ontain so many variables and
onstraints that it will not be solvable even for problem instan
es of small size. That is why we
hose to 
onstru
t the s
hedule day by day. Ea
h day we sele
t a subset of interventions that arenot s
heduled in the previous days and that 
an be s
heduled using the available te
hni
ians forthe day. This lo
al vision has obvious disadvantages, but at least the problems that we need tosolve for ea
h day are easier.Our �rst approa
h was to formulate a MIP model for ea
h day. This model 
onstru
ts teamsusing the available te
hni
ians for the day and assigns to ea
h team interventions. It maximizes thetotal 
ost of the s
heduled interventions. The 
ost of ea
h intervention depends on its priority, itsexe
ution time and its 
ompeten
e requirements. The iterative solving of this model works well forthe small instan
es of set A, but for the bigger instan
es from set B the size of the model be
omesenormous and it 
annot produ
e solutions in reasonable time.That is why we de
ided to go one more level down and to 
onstru
t the s
hedule for ea
h dayteam by team. On
e again we use a MIP model to sele
t a subset of available te
hni
ians and toassign interventions to this subset. This sa
ri�
e is payed by the fa
t that the obtained MIP modelsare very simple. In this way we 
an 
onstru
t a 
omplete s
hedule very qui
kly (time of order 0.01s for the smallest instan
es up to 2-3 min for the biggest ones on the test ma
hine). Introdu
ing arandom fa
tor, we 
an 
onstru
t many di�erent s
hedules and retain the best of them.



2 Balev and Ga
i2.1 Team s
heduling modelSuppose that we have 
onstru
ted a s
hedule for days 1, . . . , j−1 and that some teams are alreadyformed on day j. Now we want to form the next team for day j and assign interventions to it. Let
T be the set of available te
hni
ians (working on day j and not parti
ipating in the previouslyformed teams for this day). Let I be the set of available interventions (not hired and not s
heduleduntil now). We also suppose that I 
ontains only interventions that 
an be done by the te
hni
iansin T . If I = ∅, nothing more 
an be done on this day and we 
an skip to day j +1. That is why we
onsider the 
ase I 6= ∅. Let T (d, n) = {t ∈ T : C(t, d) ≥ n} be the set of available te
hni
ians oflevel at least n in domain d.We introdu
e binary variables xt, t ∈ T and yi, i ∈ I. The variable xt is 1 i� te
hni
ian t issele
ted in the next team and yi is 1 i� intervention i is assigned to this team. The new team isformed a

ording to the solution of the following model.Minimize ∑

t∈T

αtxt −
∑

i∈I

βiyi (1)subje
t to ∑

i∈I

T (i)yi ≤ 120 (2)
∑

t∈T (d,n)

xt ≥ R(i, d, n)yi ∀i ∈ I, d, n (3)
xt ∈ {0, 1} ∀t ∈ T (4)
yi ∈ {0, 1} ∀i ∈ I (5)The 
onstraint (2) says that the total exe
ution time of the sele
ted interventions must notex
eed the working time of the team. The 
onstraints (3) ensure that the team has at least therequired number of te
hni
ians in ea
h 
ompeten
e domain and level for ea
h sele
ted intervention.The goal of the obje
tive fun
tion (1) is to minimize the idle resour
es in the team. The �rstterm represents the resour
es used and the se
ond one the work done. There are di�erent waysto 
hoose the 
oe�
ients αt and βi. This 
hoi
e is 
ru
ial sin
e it determines the quality of theobtained solution.For example, let αt = 120 and βi = T (i) × H(i), where H(i) = maxd{R(i, d, 1)} is a lowerbound on the number of te
hni
ians needed to do intervention i. Figure 1 explains the meaningof this obje
tive fun
tion. Consider the se
ond team 
omposed by te
hni
ians 2, 3, 4 and 5. Thearea of the team's re
tangle is 120 × 4 = 480. The team exe
utes interventions 18, 19, 16, 11 and5. Ea
h intervention is represented by a gray re
tangle of width T (i) and height H(i). The totalarea of the re
tangles of these interventions is 60 × 4 + 15 × 4 + 15 × 1 + 15 × 1 + 15 × 4 = 390.The obje
tive fun
tion seeks to minimize the empty (white) area in the team's re
tangle. For these
ond team this area is 480− 390 = 90, while for the �rst and the third teams it is 0.6 2 72345 5111618 197 3 13Fig. 1. Example of s
heduling of day 1 for instan
e 3 from set AOf 
ourse in this example the obje
tive 
oe�
ients are too simple to work well. We have tomultiply the βi 
oe�
ients by weight fa
tors depending on the priority of ea
h intervention. In thisway the interventions of higher priority will be sele
ted earlier. Furthermore, the model may sele
ta team whi
h is too 
ompetent for the sele
ted interventions and leave less 
ompetent te
hni
iansfor the next teams in the same day. After several experiments we retained the following obje
tive
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oe�
ients:
αt = 120 ×

(

1 +

∑

d C(t, d) − 1

D × N − 1

)

× max
i∈I

{PrioCoef(i)}, βi = T (i) × H(i) × PrioCoef(i) (6)where PrioCoef(i) = 106−2×Prio(i), D is the number of domains and N is the number of levels. Inthis way an intervention of priority p is 100 times more expensive than the same intervention ofpriority p + 1 and a te
hni
ian having full 
ompeten
es in all domains 
osts twi
e as mu
h as ate
hni
ian having level 1 in one domain and level 0 in all other domains. These 
oe�
ients seem towork better than the other variants we tested, but a more detailed experimental study is neededin order to determine appropriate values of αt and βi. A �ner estimation of the 
osts taking intoa

ount the 
ompeten
es might give better results.A small fault of our model is that it might have a trivial zero solution. To avoid this trivialsolution we 
hoose a random intervention i∗ ∈ I among these of highest priority and �x the yi∗variable to one. The side e�e
t of this random 
hoi
e is that we 
an generate di�erent s
hedulesand retain the best of them.2.2 Assigning starting times to the interventionsThe iterative solving of the MIP model from the previous se
tion produ
es teams for day j anda�e
ts interventions to ea
h team. Now we have to determine the starting time of ea
h interventions
heduled on day j. We use the following MIP model to �nd the starting times:Minimize 28τ1 + 14τ2 + 4τ3 + τ4 (7)subje
t to T (k) ≤ si − sk + 120zik ≤ 120 − T (i) ∀i, k : d(i) = d(k) = j, a(i) = a(k) (8)
sk + T (k) ≤ si ∀i, k : d(i) = d(k) = j, k ∈ Pred(i) (9)
si + T (i) ≤ τPrio(i) ∀i : d(i) = j (10)
τp ≤ τ4 p = 1, 2, 3 (11)
0 ≤ si ≤ 120 − T (i) ∀i : d(i) = j (12)
zik ∈ {0, 1} ∀i, k : d(i) = d(k) = j, a(i) = a(k) (13)In this model the 
ontinuous variable si is the start time of intervention i. Constraints (8) ensurethat interventions a�e
ted to the same team do not overlap. When the binary swit
h variable zikiz zero, (8) be
omes sk + T (k) ≤ si and when zik = 1 it transforms to si + T (i) ≤ sk. Constraints(9) ensure that i is not started before its prede
essors are �nished. The 
ontinuous variables τp,

p = 1, 2, 3 represent the end time of the last intervention of priority p and τ4 is the end time ofthe last s
heduled intervention for day j. Of 
ourse τp has some meaning only if there are no moreuns
heduled interventions of priority p. Otherwise we 
an set the obje
tive fun
tion 
oe�
ient of
τp to zero.2.3 Pre
eden
e 
onstraintsThe method des
ribed in the previous se
tions generates s
hedules that may violate some pre
e-den
e 
onstraints. In this se
tion we des
ribe a pro
edure that 
he
ks and repairs su
h violations.This pro
edure is applied at the end of ea
h day and ensures that the obtained s
hedule respe
tsthe pre
eden
e 
onstraints.We de�ne the 
hain length of an intervention in the following way

ChainLen(i) =

{

0 if i is s
heduled before day j

T (i) + max{ChainLen(k) : k ∈ Pred(i)} otherwise (14)It is 
lear that if ChainLen(i) > 120 then i 
annot be s
heduled on day j. We 
an use this simpletest to ex
lude from the set I all the interventions with too long 
hains of uns
heduled prede
essorsbefore starting the s
heduling of day j. Another simple thing to do is to en
ourage the sele
tionof interventions with su

essors by the model (1)-(5). We do this by multiplying βi by two for all
i having su

essors of the same priority. Although these pre
autions, some pre
eden
e 
onstraintsmay still be violated after 
onstru
ting the s
hedule for day j. The possible problems are:
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i� Some intervention i is s
heduled on day j but some k ∈ Pred(i) is not s
heduled yet.� All interventions s
heduled on day j have their prede
essors s
heduled, but some of theirprede
essors are also s
heduled on day j and the problem (7)-(13) is infeasible.A radi
al way to avoid these problems is to ex
lude from the set I the interventions thathave uns
heduled prede
essors. This means that two interventions in pre
eden
e relation 
annotbe s
heduled on the same day. This solution is too restri
tive and produ
es quite sparse s
hedules.Instead of it we use the following iterative algorithm:1. Ex
lude from I the interventions with 
hain length more than 120. Multiply by 2 the β-
oe�
ients of the interventions that have uns
heduled prede
essors of the same priority.2. Constru
t a s
hedule for day j by iteratively solving the problem (1)-(5).3. If there are interventions s
heduled on day j with uns
heduled prede
essors, pi
k one of themrandomly, ex
lude it from I and go to step 2.4. Solve the problem (7)-(13). If it is feasible, stop.5. Pi
k random intervention s
heduled on day j whi
h have prede
essor s
heduled on day j.Ex
lude it from I. Go to step 2.This approa
h slows down the s
heduling algorithm be
ause the same day may be s
heduledmany times, but it is less restri
tive than the obvious solution of ex
luding all the interventionswith uns
heduled prede
essors.2.4 Hired interventionsSome interventions 
an be sub
ontra
ted to external 
ompanies. The 
onstraint to respe
t is thatthe total 
ost of su
h hired interventions must not ex
eed the abandon budget A. In our algorithmthe 
hoi
e of hired interventions is as simple as solving the following knapsa
k problem:Maximize ∑

i

βiyi (15)subje
t to ∑

i

aiyi ≤ A (16)
yi ∈ {0, 1} ∀i (17)where ai is the abandon 
ost of intervention i and the 
oe�
ients βi are the same as in (6). Thebinary variable yi is one i� the intervention i is abandoned. Only the interventions that have nosu

essors are 
onsidered. This knapsa
k problem is solved before the s
heduling algorithm starts.The sele
ted interventions are supposed s
heduled on day -1 and are not 
onsidered further. Wehave 
hosen this approa
h be
ause it is easy to implement but this is not at all the best thing todo. A more intelligent approa
h would 
onsist in dynami
ally sele
ting the interventions to hire inthe day when the last intervention of priority p is s
heduled (p = 1, . . . , 4).3 Experimental resultsOur algorithm is implemented in C. To solve the MIP models we use CPLEX 10 
allable library[4℄. The experiments presented in this se
tion were exe
uted on the test ma
hine provided byFran
e Tele
om and ILOG. We used the test instan
es provided by the organizers of the ROADEFChallenge. For ea
h instan
e we exe
uted 10 runs. The time of ea
h run was limited to 20 minutes.Note that this is real time (not CPU time) and the ma
hine was available to all parti
ipants inthe 
hallenge during the experiments. Table 1 presents summary results of these runs. For ea
hinstan
e we give the best and the worst s
ore obtained, as well as the average and the standarddeviation of the s
ore over the 10 runs.For 
omparison we also give the referen
e s
ores provided by the organizers. We 
an see thatin 18 out of 20 
ases even the worst s
ore obtained by our program is better than the referen
es
ore. Of 
ourse, the referen
e s
ores are just examples of valid s
ores, not of �good� s
ores, butfor the moment this is the only base of 
omparison we have.We 
an also observe the robust behavior of our algorithm. Although this is a randomizedalgorithm, the results obtained at di�erent runs are 
lose (see the standard deviation line). For
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h. . . 5Table 1. Summary results of 10 runs (the time of ea
h run is 20 min)set A 1 2 3 4 5 6 7 8 9 10ref 2490 4755 15840 14880 41220 30090 38580 26820 35600 51720min 2625 4755 13560 13620 33480 21915 32220 20100 28740 40140max 2625 4755 13560 13620 33480 24255 32220 22020 30420 40140avg 2625 4755 13560 13620 33480 23397 32220 20790 29513 40140std.dev 0 0 0 0 0 824 0 569 711 0set B 1 2 3 4 5 6 7 8 9 10ref 69960 34065 34095 50340 150360 47595 56940 51720 44640 61560min 44160 18180 19245 43905 119340 32850 40260 37920 33360 42960max 45600 21555 20700 69105 123240 35115 41700 40080 35040 46320avg 44904 19827 20199 52907 121332 33513 40944 39372 33996 44544stddev 568 1275 548 9492 1343 897 609 1007 614 11857 instan
es, we always obtain the same result. We explain this robustness by the fa
t that ouralgorithm generates many s
hedules per run and gives the best of them as solution. The onlyex
eption is instan
e 4 from data set B. The big standard deviation is due to 3 outliers: 57210and 69105 (2 o

urren
es). A possible expli
ation of this fa
t is that the test ma
hine was used byother parti
ipants during these runs.4 Con
lusionThis paper presents a step by step heuristi
 algorithm for the problem of s
heduling te
hni
ians andinterventions for tele
ommuni
ations. At ea
h step we form a team using the available te
hni
iansand assign interventions to this team. Our algorithm does not seek to minimize dire
tly the s
orefun
tion. Instead, we try to keep the te
hni
ians as busy as possible, hoping that in this way theinterventions will be done earlier. The idea of our algorithm is well resumed by the proverb �Neverput o� till tomorrow what 
an be done today�. The main disadvantage of this greedy approa
h isthat bad 
hoi
es in the earlier days may lead to idle resour
es in the later days. The advantageis that the s
hedules are 
onstru
ted qui
kly and with random 
hoi
es, so we 
an generate severals
hedules and 
hoose the best of them.This paper presents a preliminary version of our work. There are a lot of things to be improvedin our algorithm. A better 
hoi
e of the obje
tive 
oe�
ients of the team s
heduling model 
anbe done. The pre
eden
e 
onstraints 
an be managed in better way in order to avoid res
hedulingof the same day and to a

elerate the algorithm. Some improvement pro
edures 
an be added forthe days 
ontaining the last intervention of ea
h priority level. Hired interventions may be sele
teddynami
ally, during the s
heduling and not before it, et
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