When to hire the A-Team

P. Korteweg

Technical University Eindhoven, PO Box 513, 5600 MB, Eindhoven, The Netherlands
p-korteweg@tue.nl

1 Abstract

We present a greedy algorithm for the FTSCHED scheduling problem proposed by France Telecom for
the Challenge ROADEF 2007. Our algorithm produces schedules with an average cost improvement
of 26% over the benchmark, on the instance set provided by France Telecom.

2 Introduction

In many companies employees work in teams on assignments, e.g. think of airline cabin crew which
is assigned to a flight or a team of consultants which is assigned to a project. Each employee has
a set of skills which he can use to work on projects, and for a project to be a success employees
of different skills have to participate in the project. As company resources, i.e. its employees, are
limited a company has to decide on the following: in what order to work on the projects, and which
employees to assign to which project. Such problems are known as scheduling problems.

In this paper we consider the scheduling problem FTSCHED proposed by France Telecom [3].
Most scheduling problems are NP-hard [2], and it is not difficult to see that also FTSCHED is NP-
hard. Therefore we focus on finding solutions using a heuristic algorithm. In Section 3 we briefly
introduce the FTSCHED problem. In Section 4 we present a greedy algorithm for the FTSCHED
problem, in Section 5 we present the results of our greedy algorithm on the instances provided by
Challenge ROADEF 2007 [4], and in Section 6 we present our conclusions.

3 The FTSCHED Problem

In this paper we consider the scheduling problem FTSCHED proposed by France Telecom [3]. The
problem is to find a schedule where interventions are assigned to teams of technicians at specified
time slots, under certain restrictions. These restrictions concern the requirements of an intervention,
precedence constraints on interventions, and the skills and availability of a technician. Requirements
are divided into domains, and an intervention requires technicians with a certain skill level for a
subset of domains. Each intervention has a priority ranging from 1 to 4, and the objective is to
minimize a weighted sum of the makespan of interventions of priority ¢, for ¢ = 1,...,3, and the
overall makespan. For an exact description of the problem we refer to the description in [3].

Also, in some problem instances there is a budget to hire an external team to work on inter-
ventions. This team is the A-Team. The A-Team is a team which consists of four members which
have the skills to solve any problem (intervention); the team is well-known {rom an 80s TV-series
[1]. Interventions which are solved by the A-Team do not contribute to the makespan, but if the
A-Team solves an intervention, it has to solve all succeeding interventions as well. Because the
A-Team is such a skilled team, one of the main questions of the FTSCHED problem is: when to hire
the A-team?

4 A Greedy Scheduling Algorithm

We present a greedy algorithm for the FTSCHED scheduling problem. Generally speaking a greedy
scheduling algorithm is a scheduling algorithm which constructs a schedule by adding jobs according
to a certain ordering. The ordering is typically based on some intuitive notion of which jobs should
be scheduled first. Such algorithms are also known in the literature as list scheduling algorithms.



2 Korteweg

Our algorithm is the following:

Algorithm GREEDY
- Order interventions according to some ordering;
- Abandon interventions;
As long as not all interventions are scheduled do:
Schedule a new day
+ Make teams;
+ Assign interventions to teams.

The algorithm constructs a single schedule for an instance of the FTSCHED scheduling prob-
lem The algorithm is randomized, and in practice the algorithm is called several times and the
best schedule is saved as solution. The algorithm consists of four routines: Order Interventions,
Make Teams, Assign Interventions, and Abandon Interventions. We describe these routines in the
following subsections.

4.1 Ordering Interventions

The subroutine Ordering Interventions orders the interventions. We order interventions to determ-
ine which intervention to schedule first. We consider several orderings which are based on the
following intervention parameters: priority, processing time, and required number of technicians to
process the intervention. We choose these parameters because they either influence the objective
function (priority, processing time) or because they influence the difficulty of creating a schedule
(processing time, required number of technicians ). We use a lexicographic ordering, i.e. the order
is based first on priority, then on processing time, and finally on required number of technicians.
The reason to choose a lexicographic ordering which is based first on priority is the following: we
would like to schedule interventions with the same priority consecutively, because the objective is
to minimize a function of the makespan of interventions with a certain priority.

The most natural order to schedule the interventions is ’1234’; i.e. interventions with priority
1 before 2, etc. This because the objective is a weighted function of the makespan and the weights
are decreasing. However, this does not always yield the optimal solution. If, for example the sum of
processing times (the load) of priority 2 is much smaller than the load of interventions of priority
1, it may be better to schedule these interventions first. Thus, we consider the six following orders
O = {1234, 1324,2134,2314, 3124, 3214}. Interventions of priority 4 are always last in the ordering,
because these interventions do not specifically contribute to the objective function.

To be more precise we base our ordering on a generalization of the priority of an intervention,
called the given priority, and on a generalization of the processing time, called the sum load. Given
an order O of O, the given priority of an intervention is the maximum of its own priority and
the priority of any of its succeeding interventions; an intervention ¢ succeeds intervention j if j
is a predecessor of i, or if i’ is a predecessor of 7 and i’ succeeds j. Here, maximum refers to the
position of the priority in order O; we use this generalization, because an intervention can only
be scheduled if all its predecessors are scheduled as well. The sum load of an intervention is the
sum of its processing time, and the maximum sum of processing times of any path of succeeding
interventions.

4.2 Make Teams

The subroutine Make Teams creates a set of teams for a single day. The teams are created based
on the order obtained with Ordering Interventions as follows. When Make Teams is called for
day d the algorithm contains a partial schedule, i.e. a subset of interventions is scheduled on days
1,...,d — 1. The subroutine creates teams, by grouping technicians. Teams can only be extended
by adding technicians; technicians are not removed from teams, nor are they reassigned to other
teams. The subroutine considers the interventions by order O, and selects the first unscheduled
intervention. If it can be scheduled, i.e. all its predecessors are scheduled, and it can be either
added to an existing team, or a new team can be created then with probability p;, the team
schedule probability, the intervention is virtually scheduled. In this case, the schedule is assigned
to the team with minimal load and technicians are added to this team, until the team is skilled
to execute the intervention. The team set is saved, but the assignment of an intervention is not
saved; interventions are assigned to teams in the Assign Interventions subroutine.



When to hire the A-Team 3

4.3 Assign Interventions

The subroutine Assign Interventions assigns interventions to teams on a single day. It uses the
team set as created by Make Teams, and the interventions are ordered according to Ordering
Interventions as follows. When Assign Intervention is called for day d the algorithm contains a
partial schedule, i.e. a subset of interventions is scheduled on days 1,...,d — 1. The subroutine
adds interventions to teams; once an intervention is assigned to a team, it is not removed, nor is
it moved to another team. The subroutine considers the interventions by order O, and selects the
first unscheduled intervention. If it can be scheduled, i.e. all its predecessors are scheduled, and it
can be either added to an existing team, or a new team can be created then with probability ps,
the assignment probability, the intervention is scheduled. In this case, the schedule is assigned to
the team with minimal load and technicians are added to this team, until the team is skilled to
execute the intervention.

The subroutines Make Teams and Assign Interventions create a list of teams and assign inter-
ventions to these teams on day d. The quality of a team set and an assignment is determined by the
lexicographic load vector, i.e. the load of interventions of a given priority, where the lexicographic
order is based on O. The subroutines are called several times, and the algorithm selects the team
set and assignment with lexicographic minimal load vector.

4.4 Abandon Interventions

The subroutine Abandon Interventions abandons a subset of interventions to the A-Team. The
subroutine works as follows. The interventions are ordered according to Ordering Interventions.
Each next intervention on the list is abandoned with abandon probability, p,, if the abandon cost
of the intervention does not exceed the remaining abandon budget.

5 Results

We have tested the algorithm GREEDY on the instance set provided by France Telecom. This set
consists of 20 instances, ranging from small instances with 5 technicians and 5 interventions, to
large instances with up to 150 technicians and 800 interventions. Table 1 lists the instances and
gives some characteristics.

Table 1. Characteristics test instances

Name Domains Levels Technicians Interventions Abandon
testl 3 2 5 5 0
test2 3 2 5 5 0
test3 3 2 7 20 0
test4 4 3 7 20 0
testb 3 2 10 50 0
test6 5 4 10 50 0
test7 5 4 20 100 0
test8 5 4 20 100 0
test9 5 4 20 100 0
test10 5 4 15 100 0
SetB-datal 4 4 20 200 300
SetB-data2 5 3 30 300 300
SetB-data3 4 4 40 400 500
SetB-data4d 40 3 30 400 300
SetB-datab 7 4 50 500 900
SetB-data6 8 3 30 500 300
SetB-data7 10 5 100 500 500
SetB-data8 10 4 150 800 500
SetB-data9 5 5 60 120 100
SetB-datald 5 5 40 120 500




4 Korteweg

The first 10 instances are called Set A, and the last 10 instances are called Set B. The instances
of Set A do not have a budget to hire the A-Team (the budget is given in column 6 and is called
Abandon); also these instances are of smaller size than the instances in Set B.

We tested our algorithm on a 64 bits Unix system with Intel Pentium 4 processor with a
clock speed of 3 GHz and a memory of 1 GB. We tested GREEDY on the instances using ps, p; €
{0.75,0.95} and p, = 0.90, and a running time of 20 minutes. The results are given in Table 2.

Table 2. Results GREEDY on the test instances

Name Benchmark GREEDY Improv. Priol Prio2 Prio3 Prio4 Order
testl 2,490 2,340 6% 60 15 90 0 2134
test2 4,755 4,755 0% 135 0 195 0 1234
test3 15,840 11,180 29% 300 120 360 0 2134
test4 14,880 13,452 10% 204 360 540 0 1234
testh 41,220 29,355 29% 855 240 300 0 2314
test6 30,090 19,935 34% 510 120 795 0 2134
test7 38,680 31,050 20% 540 795 960 0 1234
test8 26,820 17,587 34% 503 180 120 0 3214
test9 35,600 28,028 21% 711 240 952 0 2134
test10 51,720 40,350 22% 720 1,035 1,140 0 1234
SetB-datal 69,960 43,620 38% 540 1,230 2,070 3,000 1234
SetB-data2 34,065 20,010 41% 315 480 840 1,110 1234
SetB-data3 34,095 19,575 43% 240 540 975 1,395 1234
SetB-data4 50,340 35,835 29% 645 750 1,365 1,815 1234
SetB-datab 150,360 119,160 21% 2,070 2,940 3,720 5,160 1234
SetB-data6 47,695 32,760 31% 840 240 1,080 1,560 2134
SetB-data? 56,940 41,220 28% 660 1,080 1,380 2,100 1234
SetB-data8 51,720 39,240 24% 480 1,080 1,920 3,000 1234
SetB-data9 44,640 30,000 33% 720 360 960 960 2134
SetB-datal0 61,560 38,040 38% 1,080 360 360 1,320 3214

Column 2 gives the cost of the benchmark solution, and column 3 the cost of GREEDY. The
weights used to calculate this cost are (28,14,4,0) for priority 1 to 4, and weight 1 for maximum
makespan. Column 4 gives the percentage of cost improvement of GREEDY compared with the
benchmark. Columns 5 to 8 give the makespan of interventions of priority 1 to 4, and column 9
gives the order GREEDY used to obtain this solution.

As we can see from the table, GREEDY performs better than the benchmark. On the the first
five small instances GREEDY is at least as good as the benchmark. On the other, larger instances
GREEDY has an improvement ranging from 20-43%; GREEDY has an average improvement of 26%.
Because we have no information of the benchmark schedule, we can not justify why our algorithm
performs better than the benchmark.

6 Conclusion

We presented a greedy algorithm for the FTSCHED scheduling problem. We tested the algorithm
on a set of test instances provided by France Telecom. Our algorithm is fast and finds schedules
which are on average 26% better than the benchmark solutions on the test set.

References

1. The A-Team. Universal Studios, Los Angeles (1983-1987)

2. Garey, M.R. and Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)

3. Dutot, P-F. and Laugier, A. and Bustos, A-M.: France Telecom R&D: Technicians and Interventions
Scheduling for Telecommunications. Version 2, November 10, France (2006)

4. Challenge ROADEF 2007. http://gilco.inpg.fr/ChallengeROADEF2007/. (2006-2007)



