Efficient Greedy Algorithm with Hill Climbing for
Technicians and Interventions Scheduling Problem

Wojciech Jaskowski and Szymon Wasik

{wjaskowski|swasik}@cs.put.poznan.pl

1 Introduction

We present a greedy algorithm for the Technicians and Interventions Scheduling Problem described
in [1]. Our method consists of several parts related to urgency classes of interventions. In each
part the algorithm tries various intervention sorting strategies in order to obtain the best partial
solution. Our method incorporates also a hill climbing local search metaheuristic.

The algorithm described in this paper finds significantly better solutions on the test sets than
the reference ones'. Moreover, our algorithm is efficient and its simplified version finds very good
results rapidly.

2 Method

Our method is driven by a greedy procedure (see Algorithm 1). It processes interventions one by
one trying to assign them to teams as early as possible. Above that, it iterates over the intervention
urgency classes and several possible sorting strategies. At the top level, different permutations of
intervention priorities are considered. Finally, the algorithm tries to improve the current partial
solution S by applying a hill climbing metaheuristic and by abandoning some interventions. The
improve procedure is called for the second time after the abandon routine.

In addition, to the notation introduced in [1], let us define:

— Suce(I) as the set of direct successors of I and
— Succ™(I) as the set of all (direct and indirect) successors of I.

It is easy to notice that it is not always optimal to place the interventions with the lowest priority
at the beginning of the schedule. In simple words, it depends on the trade-off between the weights
in the scoring procedure and the distribution of intervention priorities. Therefore, let us abstract
from intervention priorities by defining the intervention class:

Class(I) = Perm (Prio(I)), (1)

where Perm(z) is a certain permutation function of priorities {1, 2, 3,4}.

In order to analyze all possible orderings of priority classes, the whole algorithm is executed
for six different permutations Perm: (1,2,3,4), (1,3,2,4), (2,1,3,4), (2,3,1,4), (3,1,2,4) and (3,2,1,4).
Eventually, the final solution is the best obtained. Notice that the last priority never changes,
because the scoring function is defined in such a way that it does not take into account the finish
time of interventions of priority 4.

One can observe that, in general, it is profitable to finish processing interventions from a
certain class before starting processing interventions from another class. The dependencies between
interventions can, however, make this process impossible. In order to divide the set of interventions
into smaller class-related groups, we define the urgency class of the intervention I:

I)= i l). 2
Urg(l) I’G{I}Igégcc‘*'(l)c ass(I'))

The concept of urgency class allow to apply a greedy approach to finish processing interventions
with urgency class u before starting interventions with urgency v > u.

! Both the reference results and the test sets were provided by ROADEF 2007 Challenge organizers.

Algorithm 1 The pseudo-code of our algorithm. S, St, S2, S3 denote (partial) solutions.

procedure solve()
S0
for each priority permutation Perm
St
for each urgency class U
520
for each sorting strategy Q {
S3 - Sl
sort all I € U, using Q
for each I € U {
A «find best assignment for I
5% — 53U {A}

}
improve $°
abandon some I € U from S*
improve 53
}
S? — better(S52, 5%)
}
S « better(S, S*)
}

return S

Within one urgency class, it is crucial to design a good interventions sorting strategy that
determine which not yet assigned intervention should the greedy algorithm process as the first
one. In practical examples, the bottleneck of the problem instance is often the longest path in the
graph of dependencies between interventions of the same urgency. Let Succ*(I) be the set of direct
successors of I with the same urgency as I:

Succ*(I) = {I" € Suce(I)|Urg(I') = Urg(I)} (3)
We define rank? of intervention I as
Rank(I) = Rank(I' 1, 4
onk(I) = | wx | (Rank(1)) + (1)
and the delay of intervention I as
Delay(I) = max (Delay(I")) +T(I). (5)
I'eSuce*(I)

Both Delay(I) and Rank(I) are measures of the length of the longest path from I to any
other intervention of the same urgency. Although, Delay(I) is supposed to be more precise, our
preliminary experiments have shown that sometimes the use of Rank(I) leads to better solutions.
Therefore, we use two sorting strategies: descending by the intervention rank and descending by
the intervention delay. Notice also that both sorting strategies ensure that all predecessors of I are
processed before 1.

When Rank(I;) = Rank(Iz), the second criterion of comparison is the intervention importance
defined as

Imp(I) = ZZR(I,i,n) x Signif(i,n), (6)
where

Signif(i,n) = Req(i,n)/Avail(i,n) (7)
is the significance of domain ¢ and level n; Req(i,n) and Avail(i,n) are defined as follows:

2 We assume that maz.cx f(x) = 0 when X is empty.

Req(i,n) =Y Prio(I) x T(I) x R(I,i,n), (8)
I

Avail(i,n) = Z C(t,1). (9)

The greater Signif(i,n), the more technicians in domain i and level n is required with reference
to technicians available in domain ¢ and level n. Imp(I) biases the algorithm to process earlier the
interventions that are likely to be bottlenecks due to their domain/level requirements. I'mp(I) is
used also as a tie-breaker when Delay(I1) = Delay(I3).

In order to assign a team to intervention I, our algorithm iterates over consecutive days of the
current solution in order to find a suitable team for the intervention. It stops on the day when it is
possible to either (i) assign I to an existing team ¢ or (ii) assign I to a new team ¢. In both cases
t must meet the domain/level requirements of I. The algorithm ensures also that the dependency
restrictions of the interventions are satisfied. I is assigned to t at the earliest possible moment.

When, at certain day, I is to be assigned to a new team (ii), the algorithm uses a greedy approach
to choose the best subset from the set of free technicians that day. At first, the algorithm, creates
a team with all the free technicians. Then, it tries to remove the technicians from the team, one by
one. The final team ¢ is minimal in the sense that if any technician from ¢ is removed, ¢ does not
longer meet the requirements of I. Since some technicians are more valuable than the others and it
is profitable to save them, the most valuable technicians are tested first. The value of technicians
is defined as similarly as the importance of interventions:

Val(t) = ZC(t,i) x Signif(i, C(t,1)), (10)

where Singif(i,n) was defined in Eq. 7.

We have also explored the possibility to use a solver, instead of the greedy algorithm, to choose
the best subset from the set of free technicians for certain I, but it did not improve the results, on
average. Thus, due to its high computation time costs, we did not use it in the final algorithm.

The process of abandoning interventions is also a greedy one. For certain urgency class U, our
algorithm abandons as many interventions I € U from the end of the current scheduling S as
lead to the better evaluation of S. It ensures that the total budget A is not exceeded. Abandoning
intervention I carry with it the need to abandon all I’ € Suce™(I).

The improvement phase of our algorithm consists of two hill climbing metaheuristics, which
aim to make the current (partial) solution S better. The first one tries to free some technicians
that are currently assigned. It finds a pair of interventions I, I» (assigned to teams t1, t2) that
could be swapped without breaking any dependency restrictions. I; and Is are swapped when such
a move would cause that at least one of the teams ¢1, ¢5 is not minimal anymore. The superfluous
technicians are excluded from the team. The heuristic works as long as it can free any technician.

The second heuristic tries to compress the current solution. When it finds an intervention that
could be assigned earlier by any existing team or a new team, then it move that intervention. The
heuristic works as long as it is possible to assign an intervention earlier. When both metaheuristics
can not make any move, the improvement phase ends.

In addition to the techniques described above, we designed a technique of connecting similar
interventions. I1 and I are considered similar, if the total difference between their domain/level
requirements are lower than a certain constant ¢, i.e., when

ZZ|R(Il,i,n)—R(IQ,i,n)| <e. (11)

Obviously, to connect I7 and Is, T'(I1)+7T (I2) < Hyppar must be satisfied. Our algorithm connects
only interventions that have no dependencies. Preliminary experiments have shown that, generally,
connecting is a useful technique, but for € > 7 it always produces worst results. Therefore, we chose
the best solution produced by algorithms with e = 0..7. Notice that, for € = 0, no connection occurs.
The total improvement of the connection procedure against the pure algorithm is about 1.5%. The
connection procedure was not shown in the Algorithm 1 for clarity.

3 Results

In the Table 1 we present results of our greedy approach and the reference ones provided by
ROADEF 2007 Challenge organizers. The column ‘% diff” shows the relative percentage difference
computed as (z — z*) /z*, where z* is a reference result whereas x is our result. Clearly, our results
are in all cases not worst then the reference ones and significantly better in the vast majority of
them. In set A, our algorithm, on average, outperforms the reference results by 16.1%. Set B
contains much harder and bigger instances and the superiority of our greedy algorithm is even
more evident — 36.0%, on average.

Table 1. The comparison of results.

set A set B
reference our % diff time [s]|reference our % diff time [s]
1 2490 2490 0.0% 0.2 69960 46995 32.8% 27.7
2 4755 4755 0.0% 0.3 34065 19890 41.6% 46.1
3 15840 12600 20.5% 0.9 34095 20340 40.3% 87.5
4 14830 14040 5.6% 1.0 50340 29460 41.5% 365.5
5
6
7
8
9

41220 32400 21.4% 3.1 150360 100080 33.4% 242.2

30090 21120 29.8% 3.0 47595 34230 28.1% 1824

38580 32520 15.7% 9.0 56940 36060 36.7% 269.7

26820 19380 27.7% 8.5 51720 35550 31.3% 550.4

35600 28280 20.6% 7.1 44640 29460 34.0% 16.3
0 51720 41580 19.6% 9.0 61560 36960 40.0% 14.6
avg 16.1% 36.0%

—_

It is important to note, that our algorithm has low time complexity. The complexity of the
greedy part is limited by O(ITLN), where I, T, N, L are the number of interventions, number
of technicians, number of domains and number of levels, respectively. Hill climbing metaheuristics
have much higher worst-case complexity. Each their run is limited by O(I?TLN). While theoreti-
cally there can be at most I runs, in practice it happens very rarely to be than one. An experiment
with randomly generated instances, that we have performed, suggests that the average complexity
of the whole algorithm is O(I?TLN).

The time results presented in Table 1 concern the algorithm with the connecting extension
enabled and all the sorting strategies used. The simplified version of the algorithm with disabled
the connection loop, use only the sorting strategy with the Delay() measure, performs only a little
bit worst then the original one, being significantly faster at the same time (See Table 2). We believe
that such a fast algorithm would be convenient for the operator in a telecommunication company
when the time of scheduling process could be also a significant issue.

Table 2. The results for the simplified algorithm.

set A setB

simplified greedy % diff time [s]|simplified greedy % diff time [s]
1 2625 -5.4% 0.00 57240 18.2% 0.18
2 4755 0.0% 0.01 23820 30.1% 0.39
3 13860 12.5% 0.02 23865 30.0% 0.70
4 15300 -2.8% 0.01 34860 30.8% 5.88
5 34380 16.6% 0.03 126960 15.6% 1.42
6 24855 17.4% 0.03 35340 25.7% 1.35
7 33360 13.5% 0.08 36660 35.6% 1.29
8 21465 20.0% 0.16 35550 31.3% 2.60
9 30075 15.5% 0.06 29880 33.1% 0.10
10 44940 13.1% 0.08 36960 40.0% 0.10

avg 10.0% 29.0%

An examplary solution produced by our algorithm for the instance 8 from set A was shown
shown in Figure 1.

Fig.1. A scheduling produced by our algorithm for instance 8 from set A. Each column represents one
day. Each rectangular block is a team (the number of technicians on the left). The grey team is a team
of technicans off work, whereas white teams group technicians that are free. Color rectangles represent
interventions. The darker the color, the lower the priority (red for priority 1).

4 Conclusions

We presented a deterministic greedy algorithm that uses a hill climbing local search for improving
partial solutions. The results of our algorithm are significantly superior to the reference results.
The algorithm is simple and easy to implement. The simplified version of the algorithm, while still
performing very well, is characterized by much higher time performance.

References

1. Dutot, P.F., Laugier, A., Bustos, A.M.: Technicians and interventions scheduling for telecommunica-
tions. (2007)

