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1 Introduction and notations

We present two di�erent models together with their numerical results for the problem that was
the subject of Roadef Challenge 2007. The problem seems computationally quite di�cult. Even the
modest instances are di�cult to solve with provable optimum. We abandon from the beginning the
idea of optimal method and focus our attention to models and methods that are computationally
feasible while providing the solutions close to optimal. Nevertheless, the decomposed model could
be further developed to solve medium-size instances with very good solutions, just few percents
from the optimal. Both methods are based on the Mathematical Programming approach and most
of the ideas come from this theory. The e�cient integer programming solver is rather important
for the compact model and it is not critical for decomposed model that mainly deals with big size
instances. In the eventual quest for the optimality, the importance of e�cient solver could be very
important.

In order to solve problem, we make two important relaxations common for two models. First,
we solve the problem on the day-to-day basis, meaning that we try to group technicians and assign
them a batch of interventions to do for only one, current day. For example, on the �rst day we
group the technicians and assign them the most important interventions and then try to solve the
next day. The decisions made for one day are never reconsidered, therefore assigned interventions
can not be assigned again and do not make a part of the models for the following days. The entire
solution consists of the schedule for all working days. The other relaxation deals with interventions.
When the number of interventions grows we �rst try to schedule only the most important, and add
the others gradually.

1.1 Notations

When it is possible we will use the the notations from the description of the problem. Other
notations will be de�ned when needed.

2 Compact model

Theoretically, every NP-problem could be modelled with at least on MIP. Compact models
are notorious for their beatty, simplicity and they are often natural. They are not always the
most e�cient. We propose here one such model that solve the problem for only day with available
technicians and remaining interventions.

The set TCH = {t1, t2, . . . , tn} represents the set of all technicians available on the given day d.
The set ITV = {i1, i2, . . . , im} represents the set of all interventions not scheduled on the previous
days. We introduce the notation of teams representing by the set TM = {tm1, tm2, . . . , tmk} where
k is determined heuristically. We have also two ranges DMN = {1, 2, . . . , dmn} for domains and
LV L = {1, 2, . . . , lvl} for levels of competencies.

We build a model to assign technicians and interventions to the teams respecting the constraints
of competencies and precedences.

The boolean variable xtp,tmr has value 1 if the technician tp make a part of the team tmr, and
zero otherwise. One technician can work in only one team on one day and this fact is represented
by the set of constraints : ∑

tmr∈TM

xtp,tmr
= 1,∀tp ∈ TCH
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The boolean variable yif ,tmg
has value 1 if the intervention if is the responsibility of the team

tmr, and zero otherwise. One intervention can be done, but does not have, by only one team this
fact is represented by the set of constraints :∑

tmg∈TM

yif ,tmg
≤ 1,∀if ∈ ITV

One team can work at most 120 time units by the day so we have the following constraint∑
ip∈ITV

T (yip
) ∗ yip,tmg

≤ 120,∀tmg ∈ TM

The constraints that ensure that only quali�ed teams can do the interventions are more com-
plicated but still natural.

yip,tmg
∗R(yip

,m, n) ≤
∑

tf∈TCH,C(tf ,m)≥n

xtf ,tmg
,∀tmg ∈ TM, ip ∈ ITV, m ∈ DMN,n ∈ LV L

We still need to ensure that the solution respect the constraints of precedences. The intervention
could be done only if all its predecessors are previously done or will be done the same day.∑

tms∈TM

yif ,tms
≤

∑
tms∈TM

yig,tms
,∀ig ∈ Pred(ig)

This is not enough, we need to be sure that all directed paths in the potential-task graph of
interventions are smaller than 120. For the small instances from the set A the number of these
constraints is not huge. It was possible to �nd all paths also for instances B but it does not have
to be true in general. In any case, we use this model only on the small instances from set A.

The natural choice for the objective function would be the weighted sum of all interventions. It
is possible to use di�erent weights and have competitive results compared to other known methods
for the same problem. We propose here, just for the illustration, our �nal choice for the weights.
For the intervention i of priority one, and in a similar way for other priorities, we associate the
weight ci given by the equation

ci = 24 ∗ T (i) ∗mtn (1)

where mtn is the smallest number of technicians needed by the intervention i.
The model, as it is, is not computationally e�cient even for very small instances. The main

reason is that there is too many symmetrical, equivalent solutions obtained simply by permuting
the teams, or interventions, or technicians. On the other hand, it is still useful if we improve it
carefully. Di�erent kind of constraints that prevent permutations could be added. For example, it
is possible to preassign the technicians to the teams and allowed to a small number of them to
change the team [1]. The IP solver was able to solve these models for instances with less than 20
technicians. These results are reported in the table.....

3 Decomposed model

Let me de�ne the batch of interventions as the set of interventions whose total duration does
not exceed the 120 time units. We already call the group of technicians team. Let us imagine now
that we have all possible combination of teams and batches that are feasible, that is the team have
the competencies to e�ectuate all the interventions from the batch. Let BT represents the set of
all feasible combinations of one batch and one team. If we have n technicians and m interventions
we can assign to one batch-team one 0-1 column with dimension n + m where every component
represents one technician or one intervention. Let aij if i correspond to the row representing the
technician or the intervention that is a part of batch-team, and 0 otherwise. Let Aj denote the
corresponding vector. We then de�ne the matrix ABT of dimension (n + m) × |BT | with vectors
Aj as its columns. We de�ne also the cost c(Aj) associated with the column Aj as the sum of costs
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given by 2 (this is again only one of all possible choices). One schedule of interventions for one
given day is obtained by solving the following set-covering-like problem :

max
∑

1≤j≤|BT | xjc(Aj)∑
1≤j≤|BT | xjaij ≤ 1 ∀i = 1 . . .m + n

xj is binary.

The solution of this problem need not respect the precedences of interventions. Introducing for
i = n + 1 . . . n + m new binary variables yi we add also the constraints to respect the precedences
and consequently change the objective function. The new problem has the form

max
∑

1≤j≤|BT | xjc(Aj)−
∑

n+1≤i≤n+m yi∑
1≤j≤|BT | xjaij ≤ 1 ∀i = 1 . . . n∑
1≤j≤|BT | xjaij ≤ yi ∀i = n + 1 . . . n + m

constraints of precedences on yi

xj , yi is binary.

The main di�culty to solve this problem is really huge number of variables x, i.e. huge number of
combination batch-team. For some test instances the number of columns is of order 1010 and more.
Therefore, we solve the problem using the generating columns method. For small and medium-size
instances, it is possible, in the given time limit, to solve the linear relaxation of the problem by
generation the pro�table columns with the help of appropriate IP model. For the bigger instances,
a heuristic is need to construct the "good" columns and to solve approximatively the problem 3.

These models are constructed for every day of schedule consecutively. When the interventions
are once scheduled they are no more examined. The numerical experimentation shows the strength
of the method for some instances.

4 Computational results

In the given table we report the results obtained on the machine with one Pentium IV, 2.4
GHz and with 512 MB of RAM. We use Cplex solver version 9.0 and the solution time was 1400
seconds.

5 Conclusion

It is important to say that would be di�cult even to write down the compact model for the
whole problem, let alone solving it. Nevertheless, the 3 could be further developed to model whole
schedule over several days. We believe, and the tests approve, that it would be interesting and
possible to solve this model almost with optimality. Optimal one-day schedule could be constructed
in the reasonable time using this model.

The method is parallelizable in several ways. The construction of combinations batch-team
could be done in parallel. Every day could be solve for its own in parallel and then try to construct
whole solution. Solving set covering problem by branch and bound could be done in parallel.
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Tab. 1. Best results for instances set A and B

name priorities cost result
1 2 3 4

dataA1 1 75 1 75 1 60 0 0 0 3390
dataA2 2 60 0 0 2 60 0 0 0 5760
dataA3 3 60 3 120 4 60 0 0 0 15120
dataA4 2 120 3 120 5 60 0 0 0 13920
dataA5 6 75 7 120 8 60 0 0 0 34260
dataA6 5 75 5 120 7 30 0 0 0 26940
dataA7 6 120 7 120 8 120 0 0 0 35760
dataA8 4 120 5 60 5 75 0 0 0 23220
dataA9 5 120 7 120 8 120 0 0 0 32400
dataA10 8 120 9 120 10 60 0 0 0 46560

dataB1 5 120 12 75 18 90 25 90 300 47820
dataB2 4 75 5 120 8 120 12 30 300 25770
dataB3 3 105 5 120 9 120 13 60 500 23880
dataB4 7 45 12 15 14 75 17 60 300 48630
dataB5 18 120 26 60 32 120 43 120 890 123840
dataB6 7 120 8 120 13 15 17 120 290 44820
dataB7 6 120 9 120 11 120 18 60 490 42660
dataB8 5 120 8 120 13 120 22 30 490 39030
dataB9 6 120 8 120 8 120 8 120 100 38400
dataB10 7 120 10 120 11 120 11 120 480 46920


