Incorporating the strength of MIP modeling in schedule
construction

C.A.J. Hurkens

Eindhoven University of Technology, Department of Mathematics and Computer Science,
P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands

wscor@Qwin.tue.nl

1 Introduction

In this paper we present an approach based on polyhedral techniques for solving a complex schedul-
ing problem. The working example is the French Telecom technician assignment problem, posed
as a challenge for the Roadef 2007 competition.

Linear programming techniques are found in the literature concerning sequencing and schedul-
ing but not in great abundance. For instance they show up for tackling relatively simple problems
such as minimizing maximum lateness for a preemptive schedule of jobs with release times on
unrelated machines [1]. Also linear programming models with a combinatorial structure such as
flows or matchings can be fruitful in some scheduling contexts. It is very tempting to use complete
integer linear models for scheduling problems in practical applications. However, it turns out that
more than often, an integer linear programming model will at best describe formally the underly-
ing problem correctly, while it does not provide any solution when passed onto a solver. We have
taken this opportunity to test how the strength of MIP modeling can be applied — in practice
— to real-life scheduling challenges. We developed a schedule constructing algorithm with a lot of
subroutines that make use of a CPLEX-library for solving LP and ILP problems. The principal
characteristics and results for the twenty Challenge problems are given in the table 1 below.

In this table we give for each of the test instances the number of jobs, the number of technicians,
the number of job requirements, and the number of immediate precedences between jobs. Moreover
we present a lower bound on the objective function, based on a relaxation described in a later
section. In the right half of the table we give the values of the best solution found. The value of
each schedule is a certain weighted combination of 3 or 4 priority-makespans. Here C% _ denotes
the latest completion time of a job in the schedule belonging to priority class i. Most of these were
obtained by running the generic implementation of our algorithm for a period of 40 minutes or
less.

It can be seen from the table that the instances are varying a lot. The A-instances are relatively
small and do not allow to reject (or outsource) jobs. The B-instances allow for outsourcing jobs
(under restrictions) and some of them have a lot of precedences between jobs. Furthermore, in
some B-instances the number of requirements may be rather high.

2 Solution strategy

To have some idea how the solution will look like we first compute a lower bound on the value of the
schedule cost. The lower bound is based on a relaxation of the problem by allowing preemption, and
by estimating the minimum number of technicians needed for a job. Next we construct a solution,
partially based on the relaxed schedule. Since we have four priority classes, three of which having
a non-zero weight, we always consider schedules with a fixed order for the makespans C}_, C2. .
and C3, . Note that it may be profitable to process first all jobs of say priority 2, and then the
jobs of priority 1. This is particularly true if there are only few jobs of priority class 2. The table

with solutions indeed shows very good solutions with makespans in other orders than 1,2,3,4.

2.1 Lower bound

For a given order of the makespans, say CPL < CP2 < CP3 < (C* < C9

max max max max max? a'nd a given
set of jobs to schedule, a lower bound on CP_ is computed computing the total amount of man-

max

hours (technician-units) M H needed to process all jobs that should be finished by time CP._, and

max?’

2 Hurkens

Table 1. Characteristics of French Telecom problems

| Inst | nr jobs nr techs nrreqs nr prec LB | Cost | Crax Chax Ciax Chax |
Al 5 5 6 0 2265 | 2340 60 15 90 -
A2 5 5 6 2 2055 | 4755 135 - 195 -
A3 20 7 6 0 11310 | 11880 300 120 360 -
A4 20 7 12 7 10629 | 13620 210 360 540 -
A5 50 10 6 13 26910 | 29355 855 240 300 -
A6 50 10 20 11 17625 | 20280 525 120 780 -
AT 100 20 20 31 28442 | 32520 600 780 960 -
A8 100 20 20 21 16191 | 18960 480 180 600 -
A9 100 20 20 22 25553 | 28320 720 240 960 -
A10 100 15 20 31 36399 | 40650 | 1020 435 1200 -
B1 200 20 16 47 32085 | 35460 420 1005 1755 2610
B2 300 30 15 143 14296 | 18300 450 165 615 930
B3 400 40 16 57 14610 | 16965 195 480 870 1305
B4 400 30 120 112 16635 | 27015 645 240 1005 1575
B5 500 50 28 427 45060 | 94200 | 1620 2310 3060 4260
B6 500 30 24 457 24180 | 30510 750 285 1035 1380
B7 500 100 50 387 27481 | 33060 720 480 1080 1860
B8 800 150 40 440 31950 | 32160 480 840 1230 2040
B9 120 60 25 55 27420 | 28080 720 360 480 960
B10 120 40 25 55 34830 | 35040 960 360 480 1200

computing the first time 7" at which this number of man-hours has been made available. If at each
day m technicians are available T = # days. If the number of available technicians varies per
day (which is the case here) a simple adjustment is needed. To estimate the number of technicians
needed for a job the simplest way to go is to check the maximum number of required technicians
per skill for a job. A more precise estimate can be made by use of an ILP formulation. This is what
we do in a preprocessing phase.

Lower bounds on the other makespans are computed in a similar way.

In case it is possible to abandon jobs it is really fruitful to formulate the lower bound problem
as an integer linear programming problem.

2.2 Constructing solutions

In short, the construction algorithm is based on a strategy of building a solution from scratch,
starting at day 1, assigning a number of jobs in parallel to teams of technicians. These teams are
being built on the fly. For each day, the technicians that are clustered to a team stay together.
The basic ingredient of the algorithm is a model of matching a number of available jobs (those for
which the predecessors have been scheduled) to a number of teams. Teams may also refer to a group
of a single technician. Initially, at the beginning of each day, each team consists of one available
technician. The set of jobs is either the complete set of available jobs, or the set of available jobs
with a certain priority class. For the larger instances the set of candidate jobs had to be reduced to a
manageable size. This was done by sorting the candidate jobs according to a certain OrderingRule,
and then splitting the sorted sequences into almost equal size parts of approximately 50 jobs.

In the resulting matching problem a number of teams can be assigned to a job only if the
combined expertise of the teams meets the requirements of the job. The expertise of a team can be
written as the sum of the expertises of the technicians that are in the team. A team is assigned to
at most one job (in each matching iteration) and a job may or may not be selected. The problem
bears much ressemblance with facility location problems. Here the objective is to select a nicest
combination of jobs. For measuring the quality of an assignment we consider several Matching-
Objectives. They are based on job length, job load, job difficulty or job priority or a combination
of these. The problem is formulated as a linear integer programming problem and passed to the
solver (CPLEX).

MIP modeling in schedule construction 3

A further characteristic that influences the outcome is found in the way the ILP-model of the
matching problem is formulated and passed to the solver. One reason is that the solver is given
only a limited amount of time. It may therefore have to break off its branch-and-bound search
prematurely. A second reason is that there may be more than one optimal solution. The model has
a sparse formulation which tends to solve more quickly, and a dense formulation which seems to
have a tendency of producing slightly better solutions (in terms of complete day schedules and use
of scarse resources). In the algorithm we may use different values for the SparsityFactor (between
0.0 and 1.0).

Obviously, for the instances in which part of the jobs can be abandoned, it makes quite a
difference for the resulting schedule value, which set of jobs is abandoned. We consider different
objectives for selecting jobs to be abandoned. Restrictions are that the cost of abandoning jobs
must be within the budget, and secondly that if a job is being abandoned, then also its successors
should be abandoned. The selection of abandoned jobs further influences the lower bound on the
schedule cost (for the remaining jobs). Therefore we consider several LowerBoundObjectives. They
reflect the bonus obtained by skipping certain jobs. Again this depends on length, load, priority,
difficulty of jobs, or of combinations of these.

Finally, one can try to obtain a solution as close as possible to the computed lower bound.
To this purpose it may be necessary to temporarily ‘upgrade’ some jobs: if J; — ... — Ji is a
chain of jobs all of priority 4, and the total length is higher than the difference of the relaxed
makespans C2, — C1l . we should complete job J; earlier than C} . We may therefore change
its priority class to 1, before we call the schedule construction algorithm. We consider two levels
of UpdatingPriorities (yes/no).

2.3 Creating multiple solutions

In principle there are two ways to generate many solutions greedily according to the above scheme.
One is to introduce randomness in the ordering and randomness in the matching objective coeffi-
cients. We have chosen not to do this but only vary over a limited set of parameter settings. By
doing this we limit ourselves to the creation of at most 6 -4 -3 -3 -2 = 432 schedules. Also one
could consider adding a postprocessing stage to polish the obtained schedules. Most of our earliest
solutions already show good quality.

References

1. Lawler, E.L. and Labetoulle, J.: On preemptive scheduling of unrelated parallel processors by linear
programming. J. Assoc. Comput. Mach. 25, 612619 (1978)

