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1 Introduction

Anybody who had to deal with the organization of any kind of project, from a dinner with class-
mates to sending humans on the moon knows that one of the keys to success is the right distribution
of responsibilities among the members of the team. People are not interchangeable and some are
clearly more talented than others when it comes to organizational tasks, marketing aspects or
human relationships. Thus the central problem is how one should efficiently use the available
resources (skills) to ensure the best possible outcome. This kind of problems, often referred as
workforce scheduling problems, has received more and more attention in the last years. With the
development of highly competitive market, nowadays it is not only a question of maximizing the
profit of a company but in addition also to ensure its survival.

France Telecom (FT) is one of Europe’s leading provider for telecommunication services. It
employs a huge amount of technicians to maintain, repair and develop its infrastructure and to
provide services to its customer. With the introduction of more and more new technologies, such
as voice-over-IP or TV-on-demand and the liberalization of the french market, it is crucial for FT
to efficiently manage its pool of technicians. The resulting dispatching problem (which in fact is a
scheduling problem) is the basis for the Roadef Challenge 20073.

The aim of the challenge is to provide a solution to this problem that could serve two goals:
at an operational level, to efficiently schedule the different interventions with the current pool of
technicians available ; at a strategical level, to decide when the resources become critical and what
kind of training or hiring could improve the flexibility and efficiency of the pool of technicians.

Problem description

In this section we want to give a brief, yet more detailed description of this workforce scheduling
problem posed by France Telecom (FTWFSP). The problem is defined by a list of interventions
to be scheduled and a set of technicians that should resolve the interventions. Each technician has
different skills and different levels of competence for each skill. Moreover the days where employees
are off, due to vacations or work conventions, are given. Each intervention is characterized by a list
of requirements i.e. for each skill and each level, we are given the number of people needed (note
that overqualified technicians can be used for simple tasks). Interventions are related by precedence
constraints and some of the interventions can be outsourced at a certain cost (mainly the tasks
without successor in the precedence graph; otherwise all the successors have to be outsourced too).
Many interventions require several employees to be combined into teams. Since the member of a
team usually share a vehicle, the cannot be split during a day.

The goal is to minimize the reaction time i.e. the schedule horizon but since the interventions
have different priorities from 1 to 4, the formal objective is to minimize a weighted makespan of
the tasks with priority 1,2,3 plus the total makespan. For a more detailed/exact description we
refer to the official subject description and the FAQ of the Roadef Challenge 2007.

FTWFSP can be formulated as a Resource-Constrained Project-Scheduling Problem (RCPSP)

(cf. [6]). RCPSP is well known to be NP-hard and even worse, it is NP-hard to approximate
within a factor n(!=¢) for any € > 0, where n is the number of interventions. There are very
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straightforward naive integer programming formulation for FTWFSP. Nevertheless, as for most
scheduling problem, the natural formulation leads to intractable problem for state-of-the-art solvers
(given the dimensionality of the FT instances). Other exact approaches based on constrained
programming for instance also suffer from the high dimension of the problem. We therefore decided
to concentrate on heuristics in view of the mentioned bad approximation properties. Nevertheless,
we also believe that it is very likely that some of the characteritics of the problem (e.g. limited
number of intervention durations) could lead to interesting approximation results. We did not
investigate this aspect into detail yet but we believe that some of our heuristics could be converted
into approximation algorithms for large subclasses.

2 Methodology

In this Section we want discuss our approach for solving the problem formulated by France Telecom.
As already pointed out, the problem is closely related to the resource-constrained project-scheduling
problem so that some insight gained from those problems may be applied to this workforce schedul-
ing problem as well. For a more detailed discussion of resource-constrained project-scheduling
problem and workforce scheduling problems see for example [6], [5], [7], [1] and [8].

Following the survey paper by Kolisch and Hartmann (cf. [6]), we use a meta-heuristic strategy
that builds upon the concept of activity list representation and schedule generation schemes (SGS).
More formally, each schedule is encoded as a ordered list of tasks (the activity list) and the schedule
generation scheme is the decoder function which then transcripts this activity list into a feasible
schedule. We use a sequential SGS to decrypt our activitiy list i.e. we traverse the activity list and
greedily insert the tasks into the schedule as early as possible i.e. when all precedence constraints
are satisfied and resources (technicians), that satisfy the task’s requirements, are available. In order
to incorporate the possibility of outsourcing interventions we apply a very simple heuristic right
at the beginning and remove outsourced tasks from the list of interventions which have to be
scheduled (see Section 2.3).

Checking that the predecessor of a task have already been scheduled is easy. Now in order to
assign a new team to a task on day D, we solve a very simple set covering problem (nevertheless,
as we see later, we have to solve a lot of them). Assume that we have N different skills and L
different possible level per skill. Let E be the set of employees still available on day D. For each
employee e we denote by S. € {0,1}¥*L the characteristic vector of the skills of employee e i.e.
for every skill n € {1,..., N} and every level [ € {1,...,L}, Se(n,l) = 0 if the level for skill n of
employee e is less than [ and S, (n,l) = 1 otherwise. We also denote by R the characteristic vector
of the intervention’s requirements i.e. for all n € {1,...,N} and all I € {1,...,L}, R(n,l) is the
number of people of level [ required for skill n. We define for each employee e a boolean variable
x, to decide if employee e will be part of the team. Obviously, the goal is to minimize the number
of people used for this intervention. Thus the problem can be formulated as:

min ZSGE Te
ZEEE Se.Te Z R
ze €{0,1}

In the final algorithm we use a slight variation of this problem where among all teams of
minimum size, we take the one that is the least overqualified. By doing so we try to prevent the
waste of skills. Note that we use previously defined teams of technicians when they satisfy the
requirements of the new task and their daily capacity is not reached yet.

The meta-heuristic strategy we use is a randomized local search. In order to make this meta-
heuristic work efficiently, we need to provide good initial solutions i.e. good initial activity lists.
Since the characteristics of the Instance Sets itself are not a priori clear and often of a mixed
nature, we calculate a set of different activity list (i.e. initial solutions) emphasizing on different
characteristics of the Instance Sets. These lists are then passed to the local search. The current
implementation uses 3 different initial candidates:

1. Easy ordering by priority.
2. First order by priority and then by the size of team needed.
3. Ordering derived from the critical paths.
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This already provides a sophisticated algorithm to tackle the problem. Nevertheless, there is
another key ingredient which improves the algorithm’s performance: The pairing of interventions
to so called intervention packs which we discuss in the following Section 2.1. The local search itself
will be discussed in detail in Section 2.2 .

2.1 Pairing and packing of interventions to larger blocks

In order to generate good schedules it seems natural that teams do not waste their time within
their daily operations i.e. it would make no sense if in the morning a team of, say four people is
fully involved in an intervention while in the afternoon only one of the member works while the
other play poker... Therefore we considered the idea of initially aggregating the tasks by similarity.
This has two positive impacts. First, when critical resources are involved, we then tend to use them
more efficiently. Moreover, it removes a lot of symmetries and narrows down the solution space
which then makes the problem more tractable for the local search. In order to do so, we need a
good measure of similarity. It is clear that there are different measure which emphasize on different
aspects of similarity. After investigating on the different measures we decided to use the following
one. A pack of tasks is considered to be similar when the number of people required to process
the whole intervention pack is not too different from the minimal number of technicians needed for
the simplest one, i.e the overhead is small. We would thus ideally like to aggregate interventions
to intervention packs by minimizing the total overhead. Unfortunately, the different algorithms we
had in mind to solve this problem were impracticable due to the size of the problem and it is not
clear if there are efficient algorithms. Nevertheless, we observed that most of the time the duration
of the tasks are multiples of 15 (i.e. 15,30,...,120). We decided to exploit this property and to
approximate the packing by iteratively pairing the tasks by similarity. The pairing problem can be
formulated as a matching problem and thus can be solved in polynomial time. We formulate this
matching problem as an integer program and we use CPLEX [4] to solve it.

Despite from this, the actual problem which has to be solved here is much more complicated.
The precedence constraints have to be satisfied and naivly packing the interventions to intervention
packs can easily lead to cycles in the precedence graph which make the problem infeasible. We tackle
this with a branch-and-cut approach by dynamically checking whether the current best solution
contains cycles and if so, we add the following cut: If variables x1, ..., x) are responsible for creating
a cycle, we simply add the inequality Zle x; < k—1. This branch-and-cut approach is implemented
using CPLEX and the concept of lazy constraints. Moreover, due to the dimensionality and in order
to satisfy the time limit imposed by the challenge, we decided to implement an approximate version
of above pairing problem.

A packing that does not contain any cycles may nevertheless be problematic: It may contain a
very long precedence path which bounds the makespan from below, e.g. if the longest path is of
length 13 (with respect to a daily measure) then we need at least 13 days to process all interventions.
For an example of a highly complicated precedence graph arising from a nalve packing see Figure 1.
This precedence graph is arising from instance set B6.

These complicated precedence graphs impose two major problems. First, as already mentioned,
it imposes an artificial lower bound for the makespan and hence can result in bad schedules. On
the other hand, it is easy to imagine that such a complicated graph can also have severe impact on
the performance of the local search. Indeed, very specific transformations are needed to actually
change the schedule by changing the activity list and thus many changes to the activity lists may
remain without any effect as they violate a precedence constraint and hence are cancelled by the
SGS later. So there is a certain trade-off between packing tasks together and not creating a too
complicated precedence graph. To get hold of this problem we adaptively pack the interventions
together as long as the precedence graph does not get too complicated.

2.2 Local Search on the activity list

Local search techniques suffer from a lot of drawbacks although they have proven to be a very
effective for improving given starting solutions. First of all, since we only search locally around a
given solution it may be very well that we run into a local optimium which is far away from the
global optimum. Especially, when no quality measures like lower bounds (e.g. from relaxations)
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Fig. 1. The precedence graph of Instance Set B6 for a naive pairing

are known it is almost impossible to decide if a given solution is a good solution. Moreover, for
the considered problem the search space is enormous which makes even an exhaustive local search
around a given feasible solution impossible.

The designed local search algorithm performs a search on the activity lists. Those lists are then
transcripted into feasible schedules as described in Section 2. We start from a given activity list
and traverse its neighbors. Two activity lists are neighbors if one can be obtained from the other
by a transposition i.e. we swap two interventions (or the corresponding intervention packs). This
transformation is motivated by the assumption that a (very) good solution can be obtained by
using the right activity list and the fact that every bijection (i.e. permutation) of this list can be
represented by a product of transpositions (it is not clear that there is a permutation that produce
an optimal solution due to the teaming procedure see Section 2). Then in a classical manner we
try to iteratively improve the activity list. We want to point out that this iterative procedure may
not generate an optimal solution as it may be very well that the optimal solution may not be
reached by moving in the search space in a way that the objective function value is non-increasing.
Nevertheless, if the initial solution is already of a good quality this approach has proven to be
effective.

In order to design an effective local search algorithm for this workforce scheduling problem,
we had to deal with different problems. One problem is to choose the right amount of neighbors
(i.e. candidates close to a given feasible activity list) and the depth of the local search. Since the
time is limited, testing too many candidates may lead to too easy permutations. This then results
in only minor improvements of the activity list. On the contrary, if we check too few neighbors
it is possible that we create very complicated permutations (i.e. a product of transpositions with
a lot of transpositions) with only little impact on the actual activity list. Again an improvement
is rather unlikely. Our empirical experiments in this respect have shown that the right trade-off
between depth and breadth is essential for the performance of the local search.

Another point is that it does not make sense to try an arbitrary transposition as it is clear that
a lot of those transpositions are unlikely to generate improvements. For example it only makes
sense in very seldom cases to exchange an intervention of priority 1 with an intervention of priority
4. Therefore we put effort in understanding the transformations of the list which are more likely to
improve the quality. The following transformations have proven (by statistical analysis) to be quite
effective. Moreover, we add some random transpositions so that we use the following neighborhood
(transformation) types on the activity list:

1. Exchanging interventions of the same priority.

2. Exchanging interventions of priority difference at most 1.

3. Exchanging interventions that are not too far away from each other in the list.
4. Exchanging 2 randomly chosen interventions.
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Since the structure of the instances is quite diverse it is likely that different configurations of
neighborhoods and neighborhood sizes perform differently on the different instances. This assump-
tion is supported by empirical tests on the instance sets. Therefore we decided to implement a local
search algorithm which dynamically adapts its behavior to the actual instance set with respect to
the neighborhood size and we generate candidates according to the distribution of the improving
neighborhood types. The quality of every generated candidate is checked by actually transcripting
the activity list into the corresponding schedule using the SGS.

2.3 Outsourcing interventions

The current implementation handles the possibility of outsourcing tasks to external contractors
only in a very rudimentary way and there is still room for further improvements. In fact right at the
beginning we calculate a certain cost-measure, which relates the amount of resources (technicians) a
job occupies, the job’s priority and the costs of outsourcing the intervention. Afterwards the jobs of
highest cost-measure are outsourced which is done by removing them from the list of interventions
we have to schedule.

3 Computational results and general remarks

In the following we want to present our computational results for the instance sets A and B provided by
FT. Since the performance of our algorithm is (for obvious reasons) subject to the actual characteristics of
the computer it is run on, we want to clarify that the results presented in the tables below were obtained
on a machine with four Intel(R) Xeon(TM) 3.00GHz processor, 4 gb of shared RAM memory and 512
kb of cache memory (note that the machine was not dedicated and our algorithm uses only one CPU).
The specifications of this machine are quite similar to the server provided by FT, see FAQ of the Roadef
2007 Challenge. Due to the non-deterministic nature of our algorithm the results may slightly vary. To pay
attention to this fact, we include the best and the worst result we obtained over 10 runs for every instance
sets. All the tests were run with a time limit of 1200 seconds. Moreover, we include a third column that
gives the corresponding deviation factor. The mean variation for the full Instance Set B is about 2.3%
which is acceptable in this context. The results for Instance Set A and Instance Set B can be found in
Table 1.

TIA| best |worst| A% IB| best |worst| A%
1 | 2340 [ 2340 [1.0000 1 [44025 | 44160 [1.0031
2 | 4755 | 4755 [1.0000 2 | 21240 [ 21240 [1.0000
3 | 11880 | 11880 [1.0000 3 ]20280 | 21135 |1.0422
4 [ 14760 | 14760 |1.0000 4 | 31815 [ 34155 [1.0736
5 | 33480 | 34740 [1.0367 5 |122760[124320[1.0127
6 | 22380 | 22575 [1.0087 6 | 37965 | 38800 |1.0220
7 33360 | 33360 [1.0000 7 | 38820 [ 40680 [1.0479
8 [ 21180 | 22320 [1.0538 8 | 34440 [ 35520 [1.0314
9 30000 | 30000 [1.0000 9 33360 | 33360 [1.0000
10 | 42740 [ 42740 [1.0000 10 [ 44640 [ 44640 |1.0000
> [216875[219470]1.0100] [>"]429345[438010[1.0233]

Table 1. Results for Instance Set A and Instance Set B

For the development of the graph-theoretical functions/framework in our algorithm we used the
very powerful Boost C++ framework [2]. The random numbers for the local search were generated
using a C++ implementation [3] of the famous Mersenne-Twister-Generator which generates high
quality random numbers. Both libraries are freely available.

Last but not least we want to point out that we tried to design an algorithm that does not
only emphasize on generating good results within the provided time limit of 1200 seconds but also
provides a decent performance within short time. In fact the current implementation allows to
obtain quite reasonable results already within 30 seconds (see Table 2).
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Reference Results Results after 30 secs
Instance A|Instance B Instance A|Instance B

1 2490 69960 1 4260 46710
2 4755 34065 2 6240 23100
3 15840 34095 3 15540 24015
4 14880 50340 4 14760 46020
5 41220 150360 5 37740 130080
6 30090 47595 6 27495 41445
7 38580 56940 7 36720 41100
8 26820 51720 8 24480 36840
9 35600 44640 9 33780 35640
10 51720 61560 10 49440 46920

Table 2. Reference results provided by FT for Instance Set A and Instance Set B and results for a time
limit of 30 secs
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