
Roadef 2007 Challenge

Jean-François Cordeau, Gilbert Laporte, Federico Pasin, Stefan Ropke

HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7

1 Introduction

This extended abstract describes our solution approach to the Technicians and interventions
scheduling for telecommunications problem (TISTP) described in [1]. The document is structured
as follows. Section 2 describes a construction algorithm while Section 3 describes an adaptive large
neighborhood search algorithm for solving the problem. Section 4 contains computational results.

2 Construction algorithm

In order to describe the construction algorithm some definitions are necessary. We define the
heaviness Hj of intervention j as follows :

Hj =
∑

i∈D,n∈L

R(j, i, n)α,

where D is the set of competence domains, L is the set of skill levels, R(j, i, n) is the number of
technicians of level n in domain i needed to perform task j, and α is a parameter.

The distance d(j1, j2) between two interventions j1 and j2 is defined as

d(j1, j2) =

∑
i∈D,n∈L |R(j1, i, n) − R(j2, i, n)|(∑

i∈D,n∈L (R(j1, i, n) + R(j2, i, n))
)β

,

where β is a parameter. The distance measures how the two jobs are related in terms of required
technician skills.

The criticality cj of intervention j is defined as

cj = wpj · tj +
∑

k∈σ(j)

(wpk
· tk) ,

where pj is the priority of intervention j, tj is the execution time of intervention j and wp is the
weight associated to priority p (w1 = 28, w2 = 14, w3 = 4, w4 = 1). Finally, σ(j) is the set of tasks
that must succeed task j (not necessarily direct successors).

The construction heuristic assembles teams and assigns tasks to teams one day at a time. In
order to plan a day the heuristic uses a two-phase approach. In the first phase teams are constructed
and a single task is assigned to each team. In the second phase further tasks are assigned to the
created teams.

2.1 Phase 1

In phase 1 we use the procedure outlined in Figure 1 (recall that this procedure operates on a
specific day).

The first phase creates a number of teams. Each team performs exactly one intervention. The
first phase usually leaves a few technicians unassigned (depending on the parameter ρ). These
technicians are used in the second phase to supplement existing teams.

2.2 Phase 2

Phase 2 assigns interventions to the teams created in phase 1. As in phase 1, the procedure
operates on a specific day. The procedure is outlined in Figure 2.

The idea in step 2(a) is to assign interventions to teams that have approximately the right skills.
Interventions with high criticality are prone to be inserted before interventions with low criticality
due to the last term in the definition of f(j, τ).

2 Cordeau, Laporte, Pasin and Ropke

1. Let U be the set of unassigned interventions. Let A = ∅ be the set of interventions served on this day.
Let T be the set of of technicians available on this day.

2. Repeat until the number of unassigned technicians is less than ρ|T | where ρ ≤ 1 is a parameter.
(a) Select the intervention j ∈ U that maximizes

γ1Hj + γ2cj + γ3

∑
k∈A

d(j, k),

where γ1, γ2 and γ3 are parameters.
(b) Using the available technicians, create in a greedy fashion a team satisfying the requirements of

intervention j. If this is not possible then remove j from U and repeat step 2.
(c) Let j be served by the newly created team. A = A ∪ {j}. U = U \ {j}

Fig. 1. Construction phase I

1. Let U be the set of unassigned interventions.
2. Repeat until all technicians have been assigned to a team.

(a) Repeat until no more interventions can be assigned to teams.

i. For each unassigned intervention j ∈ U and each team τ on the current day, calculate

f(j, τ) = δ1f1(j, τ) + δ2f2(j, τ)− δ3cj .

f1(j, τ) calculates how many of the currently unassigned technicians must be added to team
τ in order to perform intervention j, f2(j, τ) calculates the skills that are wasted in team τ
by assigning intervention j to team τ . δ1, δ2 and δ3 are parameters.

ii. Select intervention j and team τ such that f(j, τ) is minimized. Add extra technicians to team
τ if necessary and let j be served by this team. U = U \ {j}.

(b) If there are unassigned technicians then create an extra team on the day consisting of one of the
unassigned technicians.

Fig. 2. Construction phase II

3 Adaptive large neighborhood search algorithm

This section presents an adaptive large neighborhood search (ALNS) metaheuristic for the
TISTP. The ALNS heuristic was proposed in [3] and [2] and is an extension of the Large Neighbo-
rhood Search (LNS) heuristic proposed in [4,5]. The ALNS heuristic is outlined in Figure 3.

Key components in an ALNS heuristic are the destroy and repair methods. Destroy methods
destroy part of the solution while the repair method repairs partially destroyed solutions. For the
TISTP we let destroy methods unassign a number of interventions from the current solution. After
unassigning interventions superfluous technicians are removed from their teams. If a team does
not serve any intervention after the destroy operation, it is removed. The repair methods for the
TISTP take as input a partial solution along with a set of unassigned interventions and for each
day a set of unassigned technicians. The unassigned interventions are served by existing teams or
by new teams created from unassigned technicians.

In an ALNS heuristic one defines several destroy and repair methods. The ALNS framework
choses which pair of destroy/repair methods to use using a set of scores {πj} that are updated
throughout the search. Destroy/repair methods that are performing well by finding new solutions
get higher scores compared to methods that do not generate any improvements. In this way the
algorithm is able to adapt dynamically to different instances. For details see [3,2].

In step 2.c the algorithm decides whether or not to accept the generated solution. A simple ac-
ceptance criterion is to accept only improving solutions, but past experience shows that a simulated-
annealing criterion accepting deteriorating solutions with a certain probability often improves per-
formance.

Roadef 2007 Challenge 3

1. Construct a feasible solution x ; set x∗ = x

2. Repeat

(a) Choose a destroy method M− and a repair method M+ using roulette wheel selection based on
previously obtained scores {πj}

(b) Generate a new solution x′ from x using the chosen destroy and repair methods
(c) If x′ can be accepted then set x = x′

(d) Update scores πj of M− and M+

(e) if f(x′) < f(x∗) then set x∗ = x′

3. until stop criteria is met
4. return x∗

Fig. 3. Adaptive Large Neighborhood Search

3.1 Destroy methods

This section describes the destroy methods that we have implemented. The destroy methods
have two common features :

1. If an intervention j with σ(j) 6= ∅ is removed, then so are all of the interventions from σ(j).
This simplifies the design of repair methods.

2. The number of interventions to remove is not fixed, but is chosen randomly in the interval [l, u]
each time a destroy method is invoked. l and u are dependent on the instance size.

Random destroy The random destroy method selects the interventions to remove at random.

Related destroy The related destroy method selects one intervention to remove at random
initially. This intervention initially forms the set S of removed interventions. The method proceeds
iteratively by choosing a random intervention from the set S and an assigned intervention j that is
closely related to the chosen intervention. Intervention j is removed from the solution and added to
the set S. We use the distance measure d(j1, j2) defined in section 2 to express relatedness between
interventions. The idea behind this method is that it should be easy to exchange interventions that
are closely related.

Last-intervention destroy For this method a fraction of the interventions to be removed are
chosen among the interventions that contribute to the objective (the last served interventions
of priority 1 to 3 and the last served interventions in general). Two variants of the algorithm
are implemented, depending on how the remaining interventions are selected. In the first variant
the remaining interventions are selected at random, while in the second variant the remaining
interventions are selected to be related to the objective-contributing interventions. The purpose of
this method is to modify the part of the solution that really affects the obejctive function value by
trying to serve some of the last interventions earlier in the schedule.

Whole-route destroy The whole-route destroy method selects a day at random and removes
all interventions from two of the teams on this day. As long as the limit on the number of re-
moved interventions has not been reached the algorithm repeats this process. This methods frees
technicians on the chosen days and allows for the construction of new teams.

3.2 Repair heuristics

As repair heuristic we use the construction algorithm described in section 2. Two variants are
considered : one that uses a fixed parameter setting and one that selects a random parameter
setting by drawing a random value for each parameter within a predefined interval.

4 Cordeau, Laporte, Pasin and Ropke

4 Computational results

Table 1 compares four heuristics for the problem. The construction heuristic described in section
2, a version of the construction heuristic that is run repeatedly with different parameter settings
chosen at random, the ALNS algorithm with an acceptance criterion that only accepts improving
solutions and an ALNS algorithm that use a simulated annealing acceptance criterion. The two
first columns in the table report the instance name along with the number of interventions in
the instance. The next column shows the best objective obtained during many experiments, the
next four columns show the objective obtained with the four methods just described and the last
four columns show how the solution obtained by the four heuristics compares to the best known
solutions. The last row sums column 3 to 7 and averages column 8 to 11.

The construction heuristic spends less than one second on each instance while the three other
heuristics are allowed to spend 10 minutes on each instance. The experiments were performed on
an AMD Opteron 250 computer that according to our experiments is roughly twice as fast as the
computer used in the competition.

The results show that using the ALNS method clearly is superior to repeatedly executing
the construction heuristics with different paramter settings. It also shows that using a simulated
annealing acceptance criterion results in better overall performance compared to accepting only
improving solutions.

Table 2 shows the results obtained with the final version of the ALNS algorithm with further
refinements. These results were also obtained by running the algorithm for 10 minutes on an
Opteron 250 computer.

Objective Percentage above best objective
Constr. Rand. ALNS ALNS Constr. Rand. ALNS ALNS

name n Best method Constr. steepest SA method Constr. steepest SA
A_data1 5 2340 3690 2550 2340 2340 57.7 9.0 0.0 0.0
A_data2 5 4755 4755 4755 4755 4755 0.0 0.0 0.0 0.0
A_data3 20 11880 16950 14700 13710 11880 42.7 23.7 15.4 0.0
A_data4 20 13452 17520 15840 13620 13452 30.2 17.8 1.2 0.0
A_data5 50 33480 42495 36180 34740 33480 26.9 8.1 3.8 0.0
A_data6 50 18870 26775 23640 19635 19710 41.9 25.3 4.1 4.5
A_data7 100 30660 36630 33900 30960 30740 19.5 10.6 1.0 0.3
A_data8 100 19500 23280 22440 20040 19995 19.4 15.1 2.8 2.5
A_data9 100 28020 40290 34284 29700 28020 43.8 22.4 6.0 0.0

A_data10 100 38636 50640 45180 40860 38636 31.1 16.9 5.8 0.0
B_data1 200 48720 93120 68250 50880 50400 91.1 40.1 4.4 3.4
B_data2 300 21240 37425 26880 23910 21240 76.2 26.6 12.6 0.0
B_data3 400 24360 47250 36750 26340 24360 94.0 50.9 8.1 0.0
B_data4 400 36060 63705 45345 40425 37545 76.7 25.7 12.1 4.1
B_data5 500 119520 148620 124380 121440 122160 24.3 4.1 1.6 2.2
B_data6 500 34575 47850 42150 35205 35130 38.4 21.9 1.8 1.6
B_data7 500 38460 43680 38640 38940 41520 13.6 0.5 1.2 8.0
B_data8 800 34800 62160 52080 34800 40680 78.6 49.7 0.0 16.9
B_data9 120 29160 34620 32490 31680 29160 18.7 11.4 8.6 0.0

B_data10 120 39720 50820 45240 42960 39720 27.9 13.9 8.2 0.0
628208 892275 745674 656940 644923 42.6 19.7 4.9 2.2

Tab. 1. Comparison of heuristics

Références

1. P.-F. Dutot, A. Laugier, and A.-M. Bustos. Technicians and Interventions Scheduling for Telecommu-
nications. France Telecom R&D, August 2006.

2. D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Operations
Research, 2007. Forthcoming.

Roadef 2007 Challenge 5

Data set A Data set B
Name Objective Name Objective

A_data1 2340 B_data1 38925
A_data2 4755 B_data2 17700
A_data3 11880 B_data3 17190
A_data4 13452 B_data4 27480
A_data5 33480 B_data5 107280
A_data6 19635 B_data6 31440
A_data7 30540 B_data7 34620
A_data8 20100 B_data8 33360
A_data9 28020 B_data9 31680
A_data10 38580 B_data10 38040

Tab. 2. Final results

3. S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transportation Science, 40(4) :455–472, 2006.

4. P. Shaw. A new local search algorithm providing high quality solutions to vehicle routing problems.
Technical report, APES Group, Department of Computer Science, University of Strathclyde, 26 Rich-
mond Street, Glasgow, Scotland, July 1997.

5. P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems.
In CP-98 (Fourth International Conference on Principles and Practice of Constraint Programming),
volume 1520 of Lecture Notes in Computer Science, pages 417–431, 1998.

