
An iterated local search algorithm for technicians and
interventions scheduling for telecommunications

Hideki Hashimoto1, Sylvain Boussier2 and Michel Vasquez2

1 Department of Applied Mathematics and Physics,
Graduate School of Informatics,

Kyoto University,
Kyoto 606-8501, Japan

hasimoto@amp.i.kyoto-u.ac.jp
2 Ecole des Mines d’Ales, Site EERIE,

Parc Scientifque Georges Besse 30035 Nimes cedex 1 France
{Sylvain.Boussier,Michel.Vasquez}@ema.fr

1 Introduction

The problem of technicians and interventions scheduling for telecommunications, which we ab-
breviate as TIST, is a very difficult problem. Indeed, even determining which interventions are
abandoned is NP-hard in the strong sense, since the precedence-constrained knapsack problem is
included as a special case. After determining hired interventions, the problem is still NP-hard, since
the precedence-constrained scheduling, which is NP-hard, is included as a special case. Assigning
interventions to days is also NP-hard since the bin packing problem is included as a special case.

2 Outline of our algorithm

We use the iterated local search (ILS)[1], which iterates LS many times from those initial solutions
generated by perturbing good solutions obtained by a sophisticated greedy algorithm.

3 Preprocessing heuristics for hired interventions

The hired interventions problem is tackled by using a preprocessing heuristics which selects inter-
ventions to be hired. These interventions are cleaned from the problem once for all at the beginning
of the algorithm: the heuristics used to do so is based on the minimum number of technicians re-
quired for each intervention and the duration of interventions T (I). The first phase is to compute
a weight wI for each intervention I so that wI = mintec(I)×T (I). Let Ωt be the set of indexes of
technicians, the value mintec(I), which is a lower bound of the number of technicians for a given
intervention I, is given by solving the following linear problem:

P (I)


Minimize

∑
t∈Ωt

xt subject to,∑
t/C(t,I)≥n,t∈Ωt

xt ≥ R(I, i, n) ∀i, n,

xt ∈ {0, 1} t ∈ Ωt

In the second phase, we have to find a subset of interventions H to be hired so that
∑

I∈H wI is
maximum and the total cost does not exceed the total budget A. The problem of finding this subset
is a knapsack problem. Let (KP ) be this problem and S(xi, xj) = 1 if intervention j must start
after the completion of intervention i and 0 otherwise. Let ΩI be set of indexes of interventions,
the (KP) can be stated as follows:

KP


Maximize

∑
I∈ΩI

wIxI subject to,∑
I∈ΩI

cost(I) · xI ≤ A,

xI ≤ xj ∀I, j ∈ ΩI/S(xI , xj) = 1
xI ∈ {0, 1} I ∈ ΩI



2 H. Hashimoto, S. Boussier and M. Vasquez

,where xI = 1 if I ∈ H and 0 otherwise. This problem is solved with a greedy algorithm which
consists in selecting the interventions of maximum ratio mintec(I)×T (I)/cost(I) with no successors
not hired, while the total cost does not exceed the maximal available budget A.

4 Description of the algorithm

With experimentation, we noticed that some natural criteria like the coefficient (linked to the pri-
ority of intervention) in the objective function or even the ratio coefficient/duration are not always
the more efficient. The main idea of our approach is to find the best permutation of the initial pri-
orities. For this purpose, we try several runs of greedy algorithm with the 24 possible permutations
of the 4 priorities of the problem and keep the one that gives the best greedy solution. Then, we
seek to improve this solution with local search.

The algorithm is divided in two phases: (1) find the best permutation of priority assignation for
interventions and (2) search iteratively local solutions around solutions genertated by the greedy
algorithm which follows the criterion assignation.

4.1 Searching the best permutation assignation

At first glance, the natural order in which we want to insert the interventions is the highest priority
first order as (1,2,3,4): that means that we give the weight 28 to interventions of priority 1, 14 for
the interventions of priority 2, etc. Unfortunately, the experimentation shows us that this natural
order is not always the best. The figures 1 and 2 highlight this fact: in those two figures, interven-
tions of priority 1 are the red ones, those of priority 2 are the green ones and those of priority 3
are the yellow ones. Each line represents a technician: the first technician is represented by the top
line and the last technician by the bottom line. Each black box corresponds to an unavailable day
for a technician and each vertical line corresponds to the end of a day.

priority 1 priotity 2 priority 3

Fig. 1. Solution with objective 17820 for instance data8 of instances set A

The solution represented by the figure 1 is obtained with the permutation (1,2,3,4) and the
solution represented by the figure 2 is obtained with the permutation (4,3,1,2) which is not obvi-
ous at first glance and corresponds to attribute the weight 28 to interventions of priority 4, 14 to
interventions of priority 3, 4 to interventions of priority 1 and 1 to interventions of priority 2. This
example illustrates the interest of searching a best order for inserting interventions using all the
possible permutations. Of course, those weights are not used to evaluate the solutions but only to
guide the greedy algorithm.

4.2 Greedy algorithm

Hence, in the first phase of the algorithm, we try all permutations of weights (i.e 24) and evaluate
them with the a greedy algorithm. This greedy algorithm tries to insert interventions according to



ROADEF 2007 3

priority 1 priotity 2 priority 3

Fig. 2. Solution with objective 17355 for instance data8 of instances set A

the following criteria: (1) the earliest day possible, (2) the team which requires the less additional
technicians to perform the intervention and (3) the minimum starting time possible. Then, we
update the criteria of the critical interventions (last intervention of each priority) with a higher
value and propagate this value to all their predecessors. The aim of this update is to tend to shift
the critical interventions to the left. Experimentally, suppose I is a critical intervention, cI its
criteria and pI its weight, then cI and all its predecessors are updated with the value pI + cI .

4.3 Iterated local search

In order to improve the search, the greedy algorithm is executed succesively 24, 12 and 6 times.
Each time the best permutations corresponding to the best objective solutions are saved and the
criteria are updated. Then, we limit the search around the two best permutations of the last 6
ones and we successively execute the greedy algorithm until we reach the time limit: each time the
greedy algorithm improves the current solution, the local search algorithm is executed and starts
with this solution. If it improves the solution, it updates the best solution. The idea is to only
search local solution around promising solutions.

5 Local search

In this section, we describe a framework of our local search (LS). It starts from an initial solution
and repeats replacing the current solution with a better solution in its neighborhood until no better
solution is found in the neighborhood. In this problem, after fixing the assignment of interventions
to teams and the process order of interventions of each team, we can determine the feasibility of
the schedule and the optimal start times of interventions. Hence we search the assignment of inter-
ventions to teams and the process order of interventions by local search and check the feasibility
and determine the optimal start times at each step.

We propose two local search algorithms, which we call critical path and packing phases. In
both, we use the swap neighborhood and the insertion neighborhood. A swap operation exchanges
the assignment and the order of two interventions. An insert operation removes an intervention
and inserts it into another position. In the local search, we consider only feasible moves, that is,
the solution does not move if the operation violates a constraint.

5.1 Critical path phase

The aim of the critical path phase is to decrease each ending time of each priority (i.e., t1, t2,
t3 and t4) without increasing the others. For a solution, we consider a critical path which is a
sequence (i1, i2, . . . , il) of interventions such that intervention il gives the ending time of a priority
and intervention ik+1 can not be scheduled unless intervention ik is scheduled at earlier period.
From the definition of a critical path, we have to schedule intervention i1 at earlier period in order
to decrease the ending time of the priority.



4 H. Hashimoto, S. Boussier and M. Vasquez

In the local search, for each priority, we find a critical path and search the neighborhood that
intervention i1 can be scheduled at earlier period.

5.2 Packing phase

In the packing path phase, we schedule interventions more efficiently without increasing the ending
time of each priority.

We estimate the efficiency for a team t with interventions I which are assigned to it by a
function

f(t, I) = (the weighted summation of the wasted skill and time)(cf. Fig. 3)

And we estimate the efficiency for a solution by the summation of f(t) for all team. In this phase,
our local search uses f as the estimation of solutions. Only a solution that does not increase the
current ending time of priority can be accepted in the move of the local search.

Fig. 3. Illustration of the wasted space for a domain and a level in a team



ROADEF 2007 5

6 Computational results

For the experimental phase, we used a 3.2 GHz Pentium with 1Go of RAM memory and limited
the process execution to 1200 seconds. The description of the data per column is the following:

– instance: The name of the instance.
– int.: The number of interventions.
– tec.: The number of technicians.
– dom.: The number of domains.
– lev.: The number of levels.
– lb: A lower bound of the objective value for the problem that does not contain the hired

interventions.
– obj.: The best objective value found.
– gap.: The gap value to lower bound.

instance int. tec. dom. lev. lb obj. gap

data1-setA 5 5 3 2 2265 2340 3,2

data2-setA 5 5 3 2 4215 4755 11,3

data3-setA 20 7 3 2 11310 11880 4,7

data4-setA 20 7 4 3 10995 13452 18,2

data5-setA 50 10 3 2 26055 28845 9,6

data6-setA 50 10 5 4 17775 18870 5,8

data7-setA 100 20 5 4 27405 30840 11,1

data8-setA 100 20 5 4 16166 17355 6,8

data9-setA 100 20 5 4 25618 27692 7,4

data10-setA 100 15 5 4 35405 40020 11,5

data1-setB 200 20 4 4 38385 43860 12,4

data2-setB 300 30 5 3 16605 20655 19,6

data3-setB 400 40 4 4 17460 20565 15

data4-setB 400 30 40 3 19035 26025 26,8

data5-setB 500 50 7 4 106290 120840 12

data6-setB 500 30 8 3 24450 34035 28,1

data7-setB 500 100 10 5 28470 35640 20,1

data8-setB 800 150 10 4 32820 33030 0,6

data9-setB 120 60 5 5 26310 29550 10,9

data10-setB 120 40 5 5 32790 34920 6

Table 1. Results obtained on benchmarks provided by France Telecom

References

1. H. R. Lourenço, O. C. Martin, T. Stützle, “Iterated Local Search,” in Handbook of Metaheuristics,
F. Glover, G. A. Kochenberger (eds), 321–353, Kluwer Academic Publishers, Boston, 2003.


