
1

A functional programming approach for an energy
planning problem

Julien Darlay Louis Esperet Yann Kieffer Guyslain Naves
Valentin Weber

Laboratoire G-SCOP
Grenoble, France

July 14th 2010

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

2

”A functional programming approach to the challenge??”

Some Q & As

What does it mean?
Tackle the challenge using a different kind of programming language

What is functional programming?
A programming paradigm with equal status for functions and data

Where does it come from?
Artificial Intelligence: LISP, Scheme, . . .

So what’s the deal?

Try it (chosen language: Ocaml)

Examine the pros/cons for this experiment

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

3

What are the benefits of using functional languages?

Benefits

High flexibility together with strong typing

Code is more conceptual

Code is more compact

Code can better reflect mathematical thinking
→ thus programming language should be less of an obstacle
(as compared to C++ and other imperative languages)

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

4

More details about the benefits

Easy-to-use and easy-to-create types

Types do not have to be declared to be used - ex.: (2, ”abc”)

Genericity (type variables)

Higher-level abstraction

Functions are first-class types

Modularity through functional interfaces

Code reuse not limited to low-level stuff

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

5

Examples

Functional interface for data

All arrays presented as functions indexed by integer arguments

outages: integer function of 2 parameters: int −> int −> int

pp1 production: real fct of 3 param.: int −> int −> int −> float

Example of a reusable routine: sum float function range

Usage: computes the sum of the elements of the array; call:
sum float function range array low index high index

Type: (int −> float) −> int −> int −> float

Example of a generic utility routine: memo

Usage: add a cache system to a function; call: memo function

Type: (’a −> ’b) −> (’a −> ’b)

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

6

So what did you end up doing?

A two-step approach

Find a solution

Improve it

A constraint checker

Spacing / Overlapping (constraints 14 to 18)

Simultaneous outages (constraints 19 to 21)

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

7

Finding a first solution

Schedule

Refuel

Production

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

8

Finding a first solution
A first schedule

Finding a schedule

Divide the horizon in intervals

For each outage in each interval

Find a starting date
Check the partial solution
Backtrack if no solution

Fix the optional outages with a greedy procedure

When choosing an outage date

Avoid the weeks of high demand

Allow enough time to consume the fuel

Reduce the search space of remaining outages

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

9

Finding a first solution
A production plan

Finding a production plan

Refuel with the minimum amount

Greedy production plan for type 2

Modulation to avoid overproduction

Complete the remaining demand with type 1

No production plan ⇒ Add more space between outages during the
previous step

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

10

A first solution

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

11

Lets add more fuel

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

12

How to improve the solution ?

Remove the unnecessary outages

Delay the outages

⇒ Simple local modifications

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

13

Conclusion
Functional programming

Pros:

Great expressivity

Fast prototyping

Fast compiled code

Interactive mode

Cons:

Lack of bindings with classical OR libraries

Purely functional data structures can be memory consuming

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

14

Conclusion
Optimization

Two-step approach

CSP-like algorithm for outage planification

Greedy procedure for production

Fast algorithm (< 20 min)

Run with less than 3 GB of RAM

Perpectives:

More complex improvements

Remove inactivity weeks

Linear programming approach to the production plan

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP

	An original approach
	

