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”A functional programming approach to the challenge??”

Some Q & As

What does it mean?
Tackle the challenge using a different kind of programming language

What is functional programming?
A programming paradigm with equal status for functions and data

Where does it come from?
Artificial Intelligence: LISP, Scheme, . . .

So what’s the deal?

Try it (chosen language: Ocaml)

Examine the pros/cons for this experiment
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What are the benefits of using functional languages?

Benefits

High flexibility together with strong typing

Code is more conceptual

Code is more compact

Code can better reflect mathematical thinking
→ thus programming language should be less of an obstacle
(as compared to C++ and other imperative languages)
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More details about the benefits

Easy-to-use and easy-to-create types

Types do not have to be declared to be used - ex.: (2, ”abc”)

Genericity (type variables)

Higher-level abstraction

Functions are first-class types

Modularity through functional interfaces

Code reuse not limited to low-level stuff
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Examples

Functional interface for data

All arrays presented as functions indexed by integer arguments

outages: integer function of 2 parameters: int −> int −> int

pp1 production: real fct of 3 param.: int −> int −> int −> float

Example of a reusable routine: sum float function range

Usage: computes the sum of the elements of the array; call:
sum float function range array low index high index

Type: ( int −> float) −> int −> int −> float

Example of a generic utility routine: memo

Usage: add a cache system to a function; call: memo function

Type: (’a −> ’b) −> (’a −> ’b)
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So what did you end up doing?

A two-step approach

Find a solution

Improve it 

A constraint checker

Spacing / Overlapping (constraints 14 to 18)

Simultaneous outages (constraints 19 to 21)
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Finding a first solution

Schedule

Refuel

Production
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Finding a first solution
A first schedule

Finding a schedule

Divide the horizon in intervals

For each outage in each interval

Find a starting date
Check the partial solution
Backtrack if no solution

Fix the optional outages with a greedy procedure

When choosing an outage date

Avoid the weeks of high demand

Allow enough time to consume the fuel

Reduce the search space of remaining outages
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Finding a first solution
A production plan

Finding a production plan

Refuel with the minimum amount

Greedy production plan for type 2

Modulation to avoid overproduction

Complete the remaining demand with type 1

No production plan ⇒ Add more space between outages during the
previous step
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A first solution
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Lets add more fuel
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How to improve the solution ?

Remove the unnecessary outages

Delay the outages

⇒ Simple local modifications

Julien Darlay, Louis Esperet, Yann Kieffer, Guyslain Naves, Valentin Weber G-SCOP



13

Conclusion
Functional programming

Pros:

Great expressivity

Fast prototyping

Fast compiled code

Interactive mode

Cons:

Lack of bindings with classical OR libraries

Purely functional data structures can be memory consuming
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Conclusion
Optimization

Two-step approach

CSP-like algorithm for outage planification

Greedy procedure for production

Fast algorithm (< 20 min)

Run with less than 3 GB of RAM

Perpectives:

More complex improvements

Remove inactivity weeks

Linear programming approach to the production plan
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