Google ROADEF/EURO challenge 2011-2012:
 Machine reassignment

1 Problem description

The aim of this challenge is to improve the usage of a set of machines. A machine has several resources, such as $R A M$ and $C P U$, and runs processes consuming these resources. Initially each process is assigned to a machine. In order to improve the machine usage, processes can be moved from one machine to another. Possible moves are subject to a set of hard constraints, such as resource capacity, and these moves are associated with various costs. A solution to this problem is a new process-machine assignment which satisfies all hard constraints and minimizes a given overall cost.

1.1 Decision variables

Let \mathcal{M} be the set of machines, and \mathcal{P} the set of processes. A solution is an assignment of each process $p \in \mathcal{P}$ to one and only one machine $m \in \mathcal{M}$; this assignment is noted by the mapping $M(p)=m$ in this document. The original assignment of process p is denoted $M_{0}(p)$. Note the original assignment is feasible, i.e. all hard constraints are satisfied.

For instance, if $\mathcal{M}=\left\{m_{1}, m_{2}\right\}$ and $\mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\}$, then $M\left(p_{1}\right)=m_{1}$, $M\left(p_{2}\right)=m_{1}, M\left(p_{3}\right)=m_{2}$ means processes p_{1} and p_{2} run on machine m_{1} and process p_{3} runs on machine m_{2}.

1.2 Hard constraints

1.2.1 Capacity constraints

Let \mathcal{R} be the set of resources which is common to all the machines, $C(m, r)$ the capacity of resource $r \in \mathcal{R}$ for machine $m \in \mathcal{M}$ and $R(p, r)$ the requirement of resource $r \in \mathcal{R}$ for process $p \in \mathcal{P}$. Then, given an assignment M, the usage U of a machine m for a resource r is defined as:

$$
U(m, r)=\sum_{\substack{p \in \mathcal{P} \text { such that } \\ M(p)=m}} R(p, r)
$$

A process can run on a machine if and only if the machine has enough available capacity on every resource. More formally, a feasible assignment must satisfy the capacity constraints:

$$
\forall m \in \mathcal{M}, r \in \mathcal{R}, \quad U(m, r) \leq C(m, r)
$$

Consider for example machines $\mathcal{M}=\left\{m_{1}, m_{2}\right\}$, processes $\mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\}$ and resources $\mathcal{R}=\{C P U, R A M\}$. Available $C P U$ is $C\left(m_{1}, C P U\right)=16$, $C\left(m_{2}, C P U\right)=8$ and available $R A M$ is $C\left(m_{1}, R A M\right)=16, C\left(m_{2}, R A M\right)=4$. $C P U$ requirements are $R\left(p_{1}, C P U\right)=6, R\left(p_{2}, C P U\right)=1$ and $R\left(p_{3}, C P U\right)=3$. $R A M$ requirements are $R\left(p_{1}, R A M\right)=13, R\left(p_{2}, R A M\right)=3$ and $R\left(p_{3}, R A M\right)=$ 1.

Assignments $M\left(p_{1}\right)=m_{1}, M\left(p_{2}\right)=m_{1}, M\left(p_{3}\right)=m_{2}$ and $M\left(p_{1}\right)=m_{1}$, $M\left(p_{2}\right)=m_{2}, M\left(p_{3}\right)=m_{2}$ satisfy capacity constraints.

However assignment $M\left(p_{1}\right)=m_{2}, M\left(p_{2}\right)=m_{1}, M\left(p_{3}\right)=m_{2}$ is not feasible as m_{2} has not enough available $C P U$. In the same way, assignment $M\left(p_{1}\right)=m_{1}$, $M\left(p_{2}\right)=m_{1}, M\left(p_{3}\right)=m_{1}$ is not feasible as m_{1} has not enough available $R A M$.

1.2.2 Conflict constraints

Processes are partitioned into services. Let \mathcal{S} be a set of services. A service $s \in \mathcal{S}$ is a set of processes which must run on distinct machines. Note that all services are disjoint.

$$
\forall s \in \mathcal{S},\left(p_{i}, p_{j}\right) \in s^{2}, p_{i} \neq p_{j} \Rightarrow M\left(p_{i}\right) \neq M\left(p_{j}\right)
$$

For instance $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}, \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\}, \mathcal{S}=\left\{s^{a}, s^{b}\right\}$ with $s^{a}=\left\{p_{1}\right\}$ and $s^{b}=\left\{p_{2}, p_{3}\right\}$, and assignments $M_{0}\left(p_{1}\right)=m_{1}, M_{0}\left(p_{2}\right)=m_{1}$ and $M_{0}\left(p_{3}\right)=m_{3}$. Process p_{1} can be reassigned to any machine, e.g. $M\left(p_{1}\right)=m_{2}$, $M\left(p_{2}\right)=m_{1}$ and $M\left(p_{3}\right)=m_{3}$. However p_{2} cannot be reassigned to machine m_{3}, i.e. $M\left(p_{1}\right)=m_{1}, M\left(p_{2}\right)=m_{3}$ and $M\left(p_{3}\right)=m_{3}$, because process p_{3} is a process of service s^{b} too and is currently running on m_{3}.

1.2.3 Spread constraints

Let \mathcal{L} be the set of locations, a location $l \in \mathcal{L}$ being a set of machines. Note that locations are disjoint sets. For each $s \in \mathcal{S}$ let $\operatorname{spreadMin}(s) \in \mathbb{N}$ be the minimum number of distinct locations where at least one process of service s should run. The constraints are defined by:

$$
\forall s \in \mathcal{S}, \sum_{l \in \mathcal{L}} \min (1,|\{p \in s \mid M(p) \in l\}|) \geq \operatorname{spreadMin}(s)
$$

For instance $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}, \mathcal{P}=\left\{p_{1}, p_{2}\right\}, \mathcal{S}=\{s\}$ with $s=$ $\left\{p_{1}, p_{2}\right\}, \mathcal{L}=\left\{\left\{m_{1}, m_{2}\right\},\left\{m_{3}\right\},\left\{m_{4}\right\}\right\}, M_{0}\left(p_{1}\right)=m_{1}, M_{0}\left(p_{2}\right)=m_{3}$ and $\operatorname{spreadMin}(s)=2$. Process p_{1} can be reassigned to m_{2} or m_{4}. Process p_{2} can be reassigned to m_{4}. But to satisfy the spread constraint, process p_{1} cannot be
reassigned to m_{3}, and p_{2} cannot be reassigned to m_{1} or m_{2} as in these cases only one location runs s processes.

1.2.4 Dependency constraints

Let \mathcal{N} be the set of neighborhoods, a neighborhood $n \in \mathcal{N}$ being a set of machines. Note that neighborhoods are disjoint sets.

If service s^{a} depends on service s^{b}, then each process of s^{a} should run in the neighborhood of a s^{b} process:

$$
\forall p^{a} \in s^{a}, \exists p^{b} \in s^{b} \text { and } n \in \mathcal{N} \text { such that } M\left(p^{a}\right) \in n \text { and } M\left(p^{b}\right) \in n
$$

Note dependency constraints are not symmetric, i.e. service s^{a} depends on service s^{b} is not equivalent to service s^{b} depends on service s^{a}.

Consider for instance $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}, \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\}, \mathcal{S}=\left\{s^{a}, s^{b}\right\}$ with $s^{a}=\left\{p_{1}\right\}$ and $s^{b}=\left\{p_{2}, p_{3}\right\}$, initial assignments $M_{0}\left(p_{1}\right)=m_{1}, M_{0}\left(p_{2}\right)=$ m_{1} and $M_{0}\left(p_{3}\right)=m_{3}$, and neighborhood $\mathcal{N}=\left\{\left\{m_{1}\right\},\left\{m_{2}\right\},\left\{m_{3}, m_{4}\right\}\right\}$. If s^{a} depends on s^{b}, p_{1} can be reassigned to m_{3} or m_{4} as p_{3} is a process of service s^{b} and runs in the $\left\{m_{3}, m_{4}\right\}$ neighborhood. However p_{1} cannot be reassigned to m_{2} as there is no s^{b} process running in the neighborhood of m_{2}. In the same way, process p_{2} cannot be reassigned to any other machine as p_{1} needs a s^{b} process in its neighborhood.

1.2.5 Transient usage constraints

When a process p is moved from one machine m to another machine m^{\prime} some resources are consumed twice; for example disk space is not available on machine m during a copy from machine m to m^{\prime}, and m^{\prime} should obviously have enough available disk space for the copy. Let $\mathcal{T} \mathcal{R} \subseteq \mathcal{R}$ be the subset of resources which need transient usage, i.e. require capacity on both original assignment $M_{0}(p)$ and current assignment $M(p)$. Then the transient usage constraints are:

$$
\forall m \in \mathcal{M}, r \in \mathcal{T R}, \quad \sum_{\substack{p \in \mathcal{P} \text { such that } \\ M_{0}(p)=m \vee M(p)=m}} R(p, r) \leq C(m, r)
$$

Note there is no time dimension in this problem, i.e. all moves are assumed to be done at the exact same time. Then for resources in $\mathcal{T R}$ this constraint subsumes the capacity constraint.

For instance $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}\right\}$ and $\mathcal{P}=\left\{p_{1}, p_{2}\right\}, M_{0}\left(p_{1}\right)=m_{1}$ and $M_{0}\left(p_{2}\right)=m_{2} . \mathcal{R}=\{C P U, D I S K\}$ and $\mathcal{T R}=\{D I S K\} . C\left(m_{1}, C P U\right)=3$, $C\left(m_{2}, C P U\right)=3, C\left(m_{3}, C P U\right)=3, C\left(m_{1}, D I S K\right)=10, C\left(m_{2}, D I S K\right)=10$, $C\left(m_{3}, D I S K\right)=7, R\left(p_{1}, C P U\right)=1, R\left(p_{2}, C P U\right)=1$ and $R\left(p_{1}, D I S K\right)=8$, $R\left(p_{2}, D I S K\right)=6$.

Let's suppose process p_{2} was moved from m_{2} to m_{3}, so $M\left(p_{2}\right)=m_{3}$ and $M_{0}\left(p_{2}\right)=m_{2}$. Process p_{1} cannot be moved from m_{1} to m_{2} even if no process is currently running on machine m_{2}. This is due to the transient usage constraint which in some way still consumes 6 DISK on machine m_{2}.

1.3 Objectives

The aim is to improve the usage of a set of machines. To do so a total objective cost is built by combining a load cost, a balance cost and several move costs.

1.3.1 Load cost

Let $S C(m, r)$ be the safety capacity of a resource $r \in \mathcal{R}$ on a machine $m \in \mathcal{M}$. The load cost is defined per resource and corresponds to the used capacity above the safety capacity; more formally:

$$
\operatorname{loadCost}(r)=\sum_{m \in \mathcal{M}} \max (0, U(m, r)-S C(m, r))
$$

For instance $\mathcal{M}=\left\{m_{1}, m_{2}\right\}, \mathcal{P}=\left\{p_{1}, p_{2}\right\}$ and $\mathcal{R}=\{r\}, M_{0}\left(p_{1}\right)=m_{1}$, $M_{0}\left(p_{2}\right)=m_{1}, C\left(m_{1}, r\right)=100, C\left(m_{2}, r\right)=100, S C\left(m_{1}, r\right)=10, S C\left(m_{2}, r\right)=$ $50, R\left(p_{1}, r\right)=7$ and $R\left(p_{2}, r\right)=12$. Then $\operatorname{loadCost}(r)=\max (0,12+7-10)=9$. Moving process p_{2} from machine m_{1} to machine m_{2}, reduces the load cost from 9 to 0 , i.e. $\operatorname{loadCost}(r)=\max (0,7-10)+\max (0,12-50)=0$.

1.3.2 Balance cost

As having available $C P U$ resource without having available $R A M$ resource is useless for future assignments, one objective of this problem is to balance available resources. The idea is to achieve a given target on the available ratio of two different resources. Let \mathcal{B} be a set of triples defined in $\mathbb{N} \times \mathcal{R}^{2}$. For a given triple $b=\left\langle r_{1}, r_{2}\right.$, target $\rangle \in \mathcal{B}$, the balance cost is:

$$
\begin{array}{r}
\text { balanceCost }(b)=\sum_{m \in \mathcal{M}} \max \left(0, \text { target } \cdot A\left(m, r_{1}\right)-A\left(m, r_{2}\right)\right) \\
\text { with } A(m, r)=C(m, r)-U(m, r)
\end{array}
$$

For instance $\mathcal{M}=\left\{m_{1}, m_{2}\right\}, \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\}$ and $M_{0}\left(p_{1}\right)=m_{1}, M_{0}\left(p_{2}\right)=$ $m_{1}, M_{0}\left(p_{3}\right)=m_{2} . \mathcal{R}=\{C P U, R A M\}$, available $C P U$ is $C\left(m_{1}, C P U\right)=16$, $C\left(m_{2}, C P U\right)=8$ and available $R A M$ is $C\left(m_{1}, R A M\right)=16, C\left(m_{2}, R A M\right)=$ 12. $C P U$ requirements are $R\left(p_{1}, C P U\right)=2, R\left(p_{2}, C P U\right)=8$ and $R\left(p_{3}, C P U\right)=$ 5. $R A M$ requirements are $R\left(p_{1}, R A M\right)=8, R\left(p_{2}, R A M\right)=1$ and $R\left(p_{3}, R A M\right)=$ 1. Machines should be balanced such that for one unit of available $C P U, 2$ units of $R A M$ are available, i.e. $\mathcal{B}=\{\langle C P U, R A M, 2\rangle\}$.

Then the balance cost is:

$$
\begin{aligned}
\text { balance } \operatorname{Cost}(\langle C P U, R A M, 2\rangle) & =\max (0,2 \cdot 6-7)+\max (0,2 \cdot 3-11) \\
& =5+0 \\
& =5 .
\end{aligned}
$$

If process p_{1} is moved from m_{1} to m_{2}, then the cost is:

$$
\begin{aligned}
\text { balance } \operatorname{Cost}(\langle C P U, R A M, 2\rangle) & =\max (0,2 \cdot 8-15)+\max (0,2 \cdot 1-3) \\
& =1+0 \\
& =1
\end{aligned}
$$

1.3.3 Process move cost

Some processes are painful to move; to model this soft constraint a process move cost is defined. Let $P M C(p)$ be the cost of moving the process p from its original machine $M_{0}(p)$.

$$
\text { processMoveCost }=\sum_{\substack{p \in \mathcal{P} \text { such that } \\ M(p) \neq M_{o}(p)}} P M C(p)
$$

For instance $\mathcal{M}=\left\{m_{1}, m_{2}\right\}$ and $\mathcal{P}=\left\{p_{1}, p_{2}\right\}, M_{0}\left(p_{1}\right)=m_{1}, M_{0}\left(p_{2}\right)=m_{1}$, $\operatorname{PMC}\left(p_{1}\right)=1, \operatorname{PMC}\left(p_{2}\right)=10^{5}$ and process p_{2} is moved from machine m_{1} to machine $m_{2}, M\left(p_{2}\right)=m_{2}$. Then processMoveCost $=10^{5}$.

1.3.4 Service move cost

To balance moves among services, a service move cost is defined as the maximum number of moved processes over services. More formally:

$$
\text { serviceMoveCost }=\max _{s \in \mathcal{S}}\left(\left|\left\{p \in s \mid M(p) \neq M_{0}(p)\right\}\right|\right)
$$

Consider for instance $\mathcal{M}=\left\{m_{1}, m_{2}, m_{3}\right\}, \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}, \mathcal{S}=\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{3}, p_{4}\right\}\right\}$, $M_{0}\left(p_{1}\right)=m_{1}, M_{0}\left(p_{2}\right)=m_{2}, M_{0}\left(p_{3}\right)=m_{1}, M_{0}\left(p_{4}\right)=m_{2}, M\left(p_{1}\right)=m_{2}$, $M\left(p_{2}\right)=m_{1}, M\left(p_{3}\right)=m_{1}$ and $M\left(p_{4}\right)=m_{3}$. Then serviceMoveCost $=$ $\max (2,1)=2$.

1.3.5 Machine move cost

Let $M M C\left(m_{\text {source }}, m_{\text {destination }}\right)$ be the cost of moving any process p from machine $m_{\text {source }}$ to machine $m_{\text {destination }}$. Obviously for any machine $m \in \mathcal{M}$, $M M C(m, m)=0$. The machine move cost is then the sum of all moves weighted by relevant $M M C$:

$$
\text { machineMoveCost }=\sum_{p \in \mathcal{P}} M M C\left(M_{0}(p), M(p)\right)
$$

Consider for instance $\mathcal{M}=\left\{m_{1}, m_{2}\right\}, \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}, M_{0}\left(p_{1}\right)=m_{1}$, $M_{0}\left(p_{2}\right)=m_{1}, M_{0}\left(p_{3}\right)=m_{2}, M_{0}\left(p_{4}\right)=m_{2}, M\left(p_{1}\right)=m_{2}, M\left(p_{2}\right)=m_{1}$, $M\left(p_{3}\right)=m_{1}$ and $M\left(p_{4}\right)=m_{1} . \quad M M C$ matrix is: $M M C\left(m_{1}, m_{1}\right)=0$, $M M C\left(m_{1}, m_{2}\right)=10, M M C\left(m_{2}, m_{1}\right)=7$ and $M M C\left(m_{2}, m_{2}\right)=0$. Then machineMoveCost $=10+0+7+7=24$.

1.3.6 Total objective cost

The total objective cost is a weighted sum of all previous costs. It is the cost to minimize.

$$
\begin{aligned}
\text { totalCost } & =\sum_{r \in \mathcal{R}} \text { weight }_{\text {loadCost }}(r) \cdot \operatorname{loadCost}(r) \\
& +\sum_{b \in \mathcal{B}} \text { weight }_{\text {balanceCost }}(b) \cdot \operatorname{balanceCost}(b) \\
& + \text { weight }_{\text {processMoveCost }} \cdot \text { processMoveCost } \\
& + \text { weight }_{\text {serviceMoveCost }} \cdot \text { serviceMoveCost } \\
& + \text { weight }_{\text {machineMoveCost }} \cdot \text { machineMoveCost }
\end{aligned}
$$

2 I/O file formats

To ease the file format description, consider the following example with four machines, three processes, two resources and two services.

$$
\begin{aligned}
& \mathcal{M}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\} \\
& \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\} \\
& \mathcal{R}=\left\{r_{1}, r_{2}\right\} \\
& \mathcal{S}=\left\{s^{a}, s^{b}\right\} \text { with } s^{a}=\left\{p_{1}, p_{2}\right\}, s^{b}=\left\{p_{3}\right\} \\
& \mathcal{N}=\left\{n_{1}, n_{2}\right\} \text { with } n_{1}=\left\{m_{1}, m_{2}\right\}, n_{2}=\left\{m_{3}, m_{4}\right\} \\
& \mathcal{L}=\left\{l_{1}, l_{2}, l_{3}\right\} \text { with } l_{1}=\left\{m_{1}, m_{2}\right\}, l_{2}=\left\{m_{3}\right\}, l_{3}=\left\{m_{4}\right\} \\
& \mathcal{T R}=\left\{r_{1}\right\} \\
& \mathcal{B}=\left\{\left\langle r_{1}, r_{2}, 20\right\rangle\right\} \\
& C\left(m_{1}, r_{1}\right)=30, C\left(m_{1}, r_{2}\right)=400, S C\left(m_{1}, r_{1}\right)=16, S C\left(m_{1}, r_{2}\right)=80 \\
& C\left(m_{2}, r_{1}\right)=10, C\left(m_{2}, r_{2}\right)=240, S C\left(m_{2}, r_{1}\right)=8, S C\left(m_{2}, r_{2}\right)=160 \\
& C\left(m_{3}, r_{1}\right)=15, C\left(m_{3}, r_{2}\right)=100, S C\left(m_{3}, r_{1}\right)=12, S C\left(m_{3}, r_{2}\right)=80 \\
& C\left(m_{4}, r_{1}\right)=10, C\left(m_{4}, r_{2}\right)=100, S C\left(m_{4}, r_{1}\right)=8, S C\left(m_{4}, r_{2}\right)=80 \\
& R\left(p_{1}, r_{1}\right)=12, R\left(p_{1}, r_{2}\right)=10 \\
& R\left(p_{2}, r_{1}\right)=10, R\left(p_{2}, r_{2}\right)=20 \\
& R\left(p_{3}, r_{1}\right)=6, R\left(p_{3}, r_{2}\right)=200 \\
& s^{b} \text { depends on } s^{a} \\
& \operatorname{spreadMin}\left(s^{a}\right)=2, \operatorname{spreadMin}\left(s^{b}\right)=1 \\
& \operatorname{PMC}\left(p_{1}\right)=1000, \operatorname{PMC}\left(p_{2}\right)=100, \operatorname{PMC}\left(p_{3}\right)=1
\end{aligned}
$$

```
weight \(_{\text {loadCost }}\left(r_{1}\right)=100\) weight \(_{\text {loadCost }}\left(r_{2}\right)=10\)
weight \(_{\text {balanceCost }}\left(\left\langle r_{1}, r_{2}, 20\right\rangle\right)=10\)
weight \(_{\text {process }}^{\text {MoveCost }}=1\)
weight \(_{\text {serviceMoveCost }}=10\)
weight \(_{\text {machineMoveCost }}=100\)
```

And the original solution is: $M_{0}\left(p_{1}\right)=m_{1}, M_{0}\left(p_{2}\right)=m_{4}, M_{0}\left(p_{3}\right)=m_{1}$
A new solution could be: $M\left(p_{1}\right)=m_{1}, M\left(p_{2}\right)=m_{3}, M\left(p_{3}\right)=m_{2}$

2.1 Instance input file format

In order to keep the file format as simple as possible, the instance input file is a list of integers and booleans. Values are space separated and should respect the following order:

Number of resources
For each resource $r_{i}:$
\quad Boolean $($ is in $\mathcal{T} \mathcal{R})$
weight loadCost $\left(r_{i}\right)$
Number of machines
For each machine m_{i} :
Neighborhood m_{i} belongs to
Location m_{i} belongs to
Capacities, i.e. $C\left(m_{i}, r_{1}\right) C\left(m_{i}, r_{2}\right) C\left(m_{i}, r_{3}\right) \ldots$
Safety capacties, i.e. $\quad S C\left(m_{i}, r_{1}\right) S C\left(m_{i}, r_{2}\right) S C\left(m_{i}, r_{3}\right) \ldots$
$M M C\left(m_{i}, *\right)$, i.e. $\quad M M C\left(m_{i}, m_{1}\right) M M C\left(m_{i}, m_{2}\right) M M C\left(m_{i}, m_{3}\right) \ldots$

Number of services
For each service s^{α} :
$\operatorname{spreadMin}\left(s^{\alpha}\right)$
Number of services s^{α} depends on and the list of those services e.g. $\quad 3 \quad s^{a} s^{d} s^{e}$

```
Number of processes
For each process }\mp@subsup{p}{i}{}\mathrm{ :
    Service pi belongs to
    Requirements, i.e. }R(\mp@subsup{p}{i}{},\mp@subsup{r}{1}{})R(\mp@subsup{p}{i}{},\mp@subsup{r}{2}{})R(\mp@subsup{p}{i}{},\mp@subsup{r}{3}{})
    PMC(pi)
```

Number of balance objectives
For each balance objective b_{i} :
balance triple, i.e. $r_{j} r_{k}$ target
weight $_{\text {balanceCost }}\left(b_{i}\right)$
weight $_{\text {process MoveCost }}$
weight $_{\text {service MoveCost }}$
weight $_{\text {machineMoveCost }}$

Next table illustrates the instance input format using previous instance as an example:

2	Number of resources
1	Resource \#0 is transient
100	weight $_{\text {loadCost }}$ of resource $\# 0$
0	Resource \#1 is not transient
10	weight $_{\text {loadCost }}$ of resource \#1
4	Number of machines
0	Machine \#0 is in neighborhood \#0
0	Machine \#0 is in location \#0
30400	Capacities of machine \#0
1680	Safety capacities of machine \#0
0145	Moving cost from machine \#0 to machines \#0, \#1, \#2 and \#3
0	Machine \#1 is in neighborhood \#0
0	Machine \#1 is in location \#0
10240	Capacities of machine \#1
8160	Safety capacities of machine \#1
1034	Moving cost from machine \#1 to machines \#0, \#1, \#2 and \#3
1	Machine \#2 is in neighborhood \#1
1	Machine \#2 is in location \#1
15100	Capacities of machine \#2
1280	Safety capacities of machine \#2
4302	Moving cost from machine \#2 to machines \#0, \#1, \#2 and \#3
1	Machine \#3 is in neighborhood \#1
2	Machine \#3 is in location \#2
10100	Capacities of machine \#3
880	Safety capacities of machine \#3
5420	Moving cost from machine \#3 to machines \#0, \#1, \#2 and \#3
2	Number of services
2	spreadMin of service \#0
0	Service \#0 doesn't depend on other services
1	spreadMin of service \#1
1	Service \#1 depends on one service
0	Service \#1 depends on service \#0

3	Number of processes
0	Process \#0 is a process of service \#0
1210	Requirements of process \#0
1000	Process Move Cost of process \#0
0	Process \#1 is a process of service \#0
1020	Requirements of process \#1
100	Process Move Cost of process \#1
1	Process \#2 is a process of service \#1
6200	Requirements of process \#2
1	Process Move Cost of process \#2
1	Number of balance costs
0120	Triple \langle resource \#0, resource \#1, target 20\rangle for balance cost \#0
10	weight for balance cost \#0
1	Weight of Process Move Cost
10	Weight of Service Move Cost
100	Weight of Machine Move Cost

2.2 Solution input/output file format

The same file format is used to define the original solution (input) and the optimized solution (output). This file format is simply a list of assignment for all processes. As the number of processes is defined in the instance input file, machine indices are enough to define a solution.

Then the input file for the previous example is:

The total cost of this original solution is $(400+1300)+2500+0+0+0=4200$.
Moving process p_{2} from machine m_{4} to m_{3} reduces the balance cost from 2500 to 1700 and the load cost of resource r_{1} from 400 to 200 . The new total cost is: $(200+1300)+1700+100+10+200=3510$. Then the optimal solution is achieved by moving process p_{3} from machine m_{1} to m_{2} with a total cost of $400+1600+101+10+300=2411$.

The corresponding output file is:

2.3 Variable ranges for this challenge

The aim of this challenge is to concentrate on the optimization problem, therefore set sizes are limited to:

- Number of machines: 5,000
- Number of resources: 20
- Number of processes: 50,000
- Number of services: 5,000
- Number of neighborhoods: 1,000
- Number of dependencies: 5,000
- Number of locations: 1,000
- Number of balance costs: 10

All other integers are indices or 32-bits unsigned integers.
As usual in the ROADEF/EURO Challenge, three data sets will be provided:

- Data set A: number of processes is limited to 1,000 . This small data set is public and is used during the qualification phase;
- Data set B: number of processes varies from 5,000 to 50,000. This medium / large data set is public and is used to evaluate proposed solvers;
- Data set X: number of processes varies from 5,000 to 50,000 . This medium / large data set is private and is used to evaluate proposed solvers.

2.4 Solution checker

In order to check if a produced solution is valid or not, and to compute the total objective cost, the source code of a solution checker is available. The syntax is: solution_checker instance_filename original_solution_filename new_solution_filename

This solution checker will be used during the challenge to evaluate produced solutions. Note the aim is to check the solution, not the instance; so the solution checker assumes the instance and the original solution are valid.

