
Google ROADEF/EURO challenge 2011-2012:

Machine reassignment

1 Problem description

The aim of this challenge is to improve the usage of a set of machines. A
machine has several resources, such as RAM and CPU, and runs processes
consuming these resources. Initially each process is assigned to a machine. In
order to improve the machine usage, processes can be moved from one machine
to another. Possible moves are subject to a set of hard constraints, such as
resource capacity, and these moves are associated with various costs. A solution
to this problem is a new process-machine assignment which satisfies all hard
constraints and minimizes a given overall cost.

1.1 Decision variables

Let M be the set of machines, and P the set of processes. A solution is an
assignment of each process p ∈ P to one and only one machine m ∈ M; this
assignment is noted by the mapping M(p) = m in this document. The original
assignment of process p is denoted M0(p). Note the original assignment is
feasible, i.e. all hard constraints are satisfied.

For instance, if M = {m1,m2} and P = {p1, p2, p3}, then M(p1) = m1,
M(p2) = m1, M(p3) = m2 means processes p1 and p2 run on machine m1 and
process p3 runs on machine m2.

1.2 Hard constraints

1.2.1 Capacity constraints

Let R be the set of resources which is common to all the machines, C(m, r) the
capacity of resource r ∈ R for machine m ∈ M and R(p, r) the requirement of
resource r ∈ R for process p ∈ P. Then, given an assignment M , the usage U
of a machine m for a resource r is defined as:

U(m, r) =
∑

p∈P such that
M(p)=m

R(p, r)

1



A process can run on a machine if and only if the machine has enough
available capacity on every resource. More formally, a feasible assignment must
satisfy the capacity constraints:

∀ m ∈M, r ∈ R, U(m, r) ≤ C(m, r)

Consider for example machines M = {m1,m2}, processes P = {p1, p2, p3}
and resources R = {CPU,RAM}. Available CPU is C(m1, CPU) = 16,
C(m2, CPU) = 8 and available RAM is C(m1, RAM) = 16, C(m2, RAM) = 4.
CPU requirements are R(p1, CPU) = 6, R(p2, CPU) = 1 and R(p3, CPU) = 3.
RAM requirements are R(p1, RAM) = 13, R(p2, RAM) = 3 and R(p3, RAM) =
1.

Assignments M(p1) = m1, M(p2) = m1, M(p3) = m2 and M(p1) = m1,
M(p2) = m2, M(p3) = m2 satisfy capacity constraints.

However assignment M(p1) = m2, M(p2) = m1, M(p3) = m2 is not feasible
as m2 has not enough available CPU . In the same way, assignment M(p1) = m1,
M(p2) = m1, M(p3) = m1 is not feasible as m1 has not enough available RAM .

1.2.2 Conflict constraints

Processes are partitioned into services. Let S be a set of services. A service
s ∈ S is a set of processes which must run on distinct machines. Note that all
services are disjoint.

∀ s ∈ S, (pi, pj) ∈ s2, pi 6= pj ⇒M(pi) 6= M(pj)

For instance M = {m1,m2,m3,m4}, P = {p1, p2, p3}, S = {sa, sb} with
sa = {p1} and sb = {p2, p3}, and assignments M0(p1) = m1, M0(p2) = m1 and
M0(p3) = m3. Process p1 can be reassigned to any machine, e.g. M(p1) = m2,
M(p2) = m1 and M(p3) = m3. However p2 cannot be reassigned to machine
m3, i.e. M(p1) = m1, M(p2) = m3 and M(p3) = m3, because process p3 is a
process of service sb too and is currently running on m3.

1.2.3 Spread constraints

Let L be the set of locations, a location l ∈ L being a set of machines. Note
that locations are disjoint sets. For each s ∈ S let spreadMin(s) ∈ N be the
minimum number of distinct locations where at least one process of service s
should run. The constraints are defined by:

∀s ∈ S,
∑
l∈L

min

(
1,

∣∣∣∣{p ∈ s | M(p) ∈ l}
∣∣∣∣) ≥ spreadMin(s)

For instance M = {m1,m2,m3,m4}, P = {p1, p2}, S = {s} with s =
{p1, p2}, L = {{m1,m2}, {m3}, {m4}}, M0(p1) = m1, M0(p2) = m3 and
spreadMin(s) = 2. Process p1 can be reassigned to m2 or m4. Process p2 can
be reassigned to m4. But to satisfy the spread constraint, process p1 cannot be

2



reassigned to m3, and p2 cannot be reassigned to m1 or m2 as in these cases
only one location runs s processes.

1.2.4 Dependency constraints

Let N be the set of neighborhoods, a neighborhood n ∈ N being a set of
machines. Note that neighborhoods are disjoint sets.

If service sa depends on service sb, then each process of sa should run in the
neighborhood of a sb process:

∀ pa ∈ sa,∃ pb ∈ sb and n ∈ N such that M(pa) ∈ n and M(pb) ∈ n

Note dependency constraints are not symmetric, i.e. service sa depends on
service sb is not equivalent to service sb depends on service sa.

Consider for instanceM = {m1,m2,m3,m4}, P = {p1, p2, p3}, S = {sa, sb}
with sa = {p1} and sb = {p2, p3}, initial assignments M0(p1) = m1, M0(p2) =
m1 and M0(p3) = m3, and neighborhood N = {{m1}, {m2}, {m3,m4}}. If sa

depends on sb, p1 can be reassigned to m3 or m4 as p3 is a process of service sb

and runs in the {m3,m4} neighborhood. However p1 cannot be reassigned to
m2 as there is no sb process running in the neighborhood of m2. In the same
way, process p2 cannot be reassigned to any other machine as p1 needs a sb

process in its neighborhood.

1.2.5 Transient usage constraints

When a process p is moved from one machine m to another machine m′ some
resources are consumed twice; for example disk space is not available on machine
m during a copy from machine m to m′, and m′ should obviously have enough
available disk space for the copy. Let T R ⊆ R be the subset of resources which
need transient usage, i.e. require capacity on both original assignment M0(p)
and current assignment M(p). Then the transient usage constraints are:

∀m ∈M, r ∈ T R,
∑

p∈P such that
M0(p)=m ∨ M(p)=m

R(p, r) ≤ C(m, r)

Note there is no time dimension in this problem, i.e. all moves are assumed
to be done at the exact same time. Then for resources in T R this constraint
subsumes the capacity constraint.

For instance M = {m1,m2,m3} and P = {p1, p2}, M0(p1) = m1 and
M0(p2) = m2. R = {CPU,DISK} and T R = {DISK}. C(m1, CPU) = 3,
C(m2, CPU) = 3, C(m3, CPU) = 3, C(m1, DISK) = 10, C(m2, DISK) = 10,
C(m3, DISK) = 7, R(p1, CPU) = 1, R(p2, CPU) = 1 and R(p1, DISK) = 8,
R(p2, DISK) = 6.

Let’s suppose process p2 was moved from m2 to m3, so M(p2) = m3 and
M0(p2) = m2. Process p1 cannot be moved from m1 to m2 even if no process is
currently running on machine m2. This is due to the transient usage constraint
which in some way still consumes 6 DISK on machine m2.

3



1.3 Objectives

The aim is to improve the usage of a set of machines. To do so a total objective
cost is built by combining a load cost, a balance cost and several move costs.

1.3.1 Load cost

Let SC(m, r) be the safety capacity of a resource r ∈ R on a machine m ∈M.
The load cost is defined per resource and corresponds to the used capacity above
the safety capacity; more formally:

loadCost(r) =
∑
m∈M

max
(
0, U(m, r)− SC(m, r)

)
For instance M = {m1,m2}, P = {p1, p2} and R = {r}, M0(p1) = m1,

M0(p2) = m1, C(m1, r) = 100, C(m2, r) = 100, SC(m1, r) = 10, SC(m2, r) =
50, R(p1, r) = 7 and R(p2, r) = 12. Then loadCost(r) = max(0, 12+7−10) = 9.
Moving process p2 from machine m1 to machine m2, reduces the load cost from
9 to 0, i.e. loadCost(r) = max(0, 7− 10) + max(0, 12− 50) = 0.

1.3.2 Balance cost

As having available CPU resource without having available RAM resource is
useless for future assignments, one objective of this problem is to balance avail-
able resources. The idea is to achieve a given target on the available ratio of
two different resources. Let B be a set of triples defined in N×R2. For a given
triple b = 〈r1, r2, target〉 ∈ B, the balance cost is:

balanceCost(b) =
∑
m∈M

max
(
0, target ·A(m, r1)−A(m, r2)

)
with A(m, r) = C(m, r)− U(m, r)

For instance M = {m1,m2}, P = {p1, p2, p3} and M0(p1) = m1, M0(p2) =
m1, M0(p3) = m2. R = {CPU,RAM}, available CPU is C(m1, CPU) = 16,
C(m2, CPU) = 8 and available RAM is C(m1, RAM) = 16, C(m2, RAM) =
12. CPU requirements are R(p1, CPU) = 2, R(p2, CPU) = 8 and R(p3, CPU) =
5. RAM requirements are R(p1, RAM) = 8, R(p2, RAM) = 1 and R(p3, RAM) =
1. Machines should be balanced such that for one unit of available CPU , 2 units
of RAM are available, i.e. B = {〈CPU,RAM, 2〉}.

Then the balance cost is:

balanceCost(〈CPU,RAM, 2〉) = max(0, 2 · 6− 7) + max(0, 2 · 3− 11)

= 5 + 0

= 5.

If process p1 is moved from m1 to m2, then the cost is:

4



balanceCost(〈CPU,RAM, 2〉) = max(0, 2 · 8− 15) + max(0, 2 · 1− 3)

= 1 + 0

= 1.

1.3.3 Process move cost

Some processes are painful to move; to model this soft constraint a process
move cost is defined. Let PMC(p) be the cost of moving the process p from its
original machine M0(p).

processMoveCost =
∑

p∈P such that
M(p) 6=Mo(p)

PMC(p)

For instanceM = {m1,m2} and P = {p1, p2}, M0(p1) = m1, M0(p2) = m1,
PMC(p1) = 1, PMC(p2) = 105 and process p2 is moved from machine m1 to
machine m2, M(p2) = m2. Then processMoveCost = 105.

1.3.4 Service move cost

To balance moves among services, a service move cost is defined as the maximum
number of moved processes over services. More formally:

serviceMoveCost = max
s∈S

(∣∣{p ∈ s | M(p) 6= M0(p)}
∣∣)

Consider for instanceM = {m1,m2,m3}, P = {p1, p2, p3, p4}, S = {{p1, p2}, {p3, p4}},
M0(p1) = m1, M0(p2) = m2, M0(p3) = m1, M0(p4) = m2, M(p1) = m2,
M(p2) = m1, M(p3) = m1 and M(p4) = m3. Then serviceMoveCost =
max(2, 1) = 2.

1.3.5 Machine move cost

Let MMC(msource,mdestination) be the cost of moving any process p from ma-
chine msource to machine mdestination. Obviously for any machine m ∈ M,
MMC(m,m) = 0. The machine move cost is then the sum of all moves weighted
by relevant MMC:

machineMoveCost =
∑
p∈P

MMC(M0(p),M(p))

Consider for instance M = {m1,m2}, P = {p1, p2, p3, p4}, M0(p1) = m1,
M0(p2) = m1, M0(p3) = m2, M0(p4) = m2, M(p1) = m2, M(p2) = m1,
M(p3) = m1 and M(p4) = m1. MMC matrix is: MMC(m1,m1) = 0,
MMC(m1,m2) = 10, MMC(m2,m1) = 7 and MMC(m2,m2) = 0. Then
machineMoveCost = 10 + 0 + 7 + 7 = 24.

5



1.3.6 Total objective cost

The total objective cost is a weighted sum of all previous costs. It is the cost to
minimize.

totalCost =
∑
r∈R

weightloadCost(r) · loadCost(r)

+
∑
b∈B

weightbalanceCost(b) · balanceCost(b)

+ weightprocessMoveCost · processMoveCost

+ weightserviceMoveCost · serviceMoveCost

+ weightmachineMoveCost ·machineMoveCost

2 I/O file formats

To ease the file format description, consider the following example with four
machines, three processes, two resources and two services.

M = {m1,m2,m3,m4}
P = {p1, p2, p3}
R = {r1, r2}
S = {sa, sb} with sa = {p1, p2}, sb = {p3}
N = {n1, n2} with n1 = {m1,m2}, n2 = {m3,m4}
L = {l1, l2, l3} with l1 = {m1,m2}, l2 = {m3}, l3 = {m4}
T R = {r1}
B = {〈r1, r2, 20〉}

C(m1, r1) = 30, C(m1, r2) = 400, SC(m1, r1) = 16, SC(m1, r2) = 80
C(m2, r1) = 10, C(m2, r2) = 240, SC(m2, r1) = 8, SC(m2, r2) = 160
C(m3, r1) = 15, C(m3, r2) = 100, SC(m3, r1) = 12, SC(m3, r2) = 80
C(m4, r1) = 10, C(m4, r2) = 100, SC(m4, r1) = 8, SC(m4, r2) = 80
R(p1, r1) = 12, R(p1, r2) = 10
R(p2, r1) = 10, R(p2, r2) = 20
R(p3, r1) = 6, R(p3, r2) = 200

sb depends on sa

spreadMin(sa) = 2, spreadMin(sb) = 1
PMC(p1) = 1000, PMC(p2) = 100, PMC(p3) = 1

MMC(mi,mj) m1 m2 m3 m4

m1 0 1 4 5
m2 1 0 3 4
m3 4 3 0 2
m4 5 4 2 0

6



weightloadCost(r1) = 100, weightloadCost(r2) = 10
weightbalanceCost(〈r1, r2, 20〉) = 10
weightprocessMoveCost = 1
weightserviceMoveCost = 10
weightmachineMoveCost = 100

And the original solution is: M0(p1) = m1, M0(p2) = m4, M0(p3) = m1

A new solution could be: M(p1) = m1, M(p2) = m3, M(p3) = m2

2.1 Instance input file format

In order to keep the file format as simple as possible, the instance input file is
a list of integers and booleans. Values are space separated and should respect
the following order:

Number of resources
For each resource ri:

Boolean(is in T R)
weightloadCost(ri)

Number of machines
For each machine mi:

Neighborhood mi belongs to
Location mi belongs to
Capacities, i.e. C(mi, r1) C(mi, r2) C(mi, r3). . .
Safety capacties, i.e. SC(mi, r1) SC(mi, r2) SC(mi, r3). . .
MMC(mi, ∗), i.e. MMC(mi,m1) MMC(mi,m2) MMC(mi,m3). . .

Number of services
For each service sα:

spreadMin(sα)
Number of services sα depends on and the list of those services

e.g. 3 sa sd se

Number of processes
For each process pi:

Service pi belongs to
Requirements, i.e. R(pi, r1) R(pi, r2) R(pi, r3). . .
PMC(pi)

Number of balance objectives
For each balance objective bi:

balance triple, i.e. rj rk target
weightbalanceCost(bi)

weightprocessMoveCost

weightserviceMoveCost

weightmachineMoveCost

7



Next table illustrates the instance input format using previous instance as
an example:

2 Number of resources

1 Resource #0 is transient
100 weightloadCost of resource #0

0 Resource #1 is not transient
10 weightloadCost of resource #1

4 Number of machines

0 Machine #0 is in neighborhood #0
0 Machine #0 is in location #0
30 400 Capacities of machine #0
16 80 Safety capacities of machine #0
0 1 4 5 Moving cost from machine #0 to machines #0, #1, #2 and #3

0 Machine #1 is in neighborhood #0
0 Machine #1 is in location #0
10 240 Capacities of machine #1
8 160 Safety capacities of machine #1
1 0 3 4 Moving cost from machine #1 to machines #0, #1, #2 and #3

1 Machine #2 is in neighborhood #1
1 Machine #2 is in location #1
15 100 Capacities of machine #2
12 80 Safety capacities of machine #2
4 3 0 2 Moving cost from machine #2 to machines #0, #1, #2 and #3

1 Machine #3 is in neighborhood #1
2 Machine #3 is in location #2
10 100 Capacities of machine #3
8 80 Safety capacities of machine #3
5 4 2 0 Moving cost from machine #3 to machines #0, #1, #2 and #3

2 Number of services

2 spreadMin of service #0
0 Service #0 doesn’t depend on other services

1 spreadMin of service #1
1 Service #1 depends on one service
0 Service #1 depends on service #0

8



3 Number of processes
0 Process #0 is a process of service #0
12 10 Requirements of process #0
1000 Process Move Cost of process #0

0 Process #1 is a process of service #0
10 20 Requirements of process #1
100 Process Move Cost of process #1

1 Process #2 is a process of service #1
6 200 Requirements of process #2
1 Process Move Cost of process #2

1 Number of balance costs
0 1 20 Triple 〈resource #0, resource #1, target 20 〉 for balance cost #0
10 weight for balance cost #0

1 Weight of Process Move Cost
10 Weight of Service Move Cost
100 Weight of Machine Move Cost

2.2 Solution input/output file format

The same file format is used to define the original solution (input) and the
optimized solution (output). This file format is simply a list of assignment for
all processes. As the number of processes is defined in the instance input file,
machine indices are enough to define a solution.

Then the input file for the previous example is:

0 3 0

The total cost of this original solution is (400+1300)+2500+0+0+0 = 4200.
Moving process p2 from machine m4 to m3 reduces the balance cost from

2500 to 1700 and the load cost of resource r1 from 400 to 200. The new total
cost is: (200 + 1300) + 1700 + 100 + 10 + 200 = 3510. Then the optimal solution
is achieved by moving process p3 from machine m1 to m2 with a total cost of
400 + 1600 + 101 + 10 + 300 = 2411.

The corresponding output file is:

0 2 1

9



2.3 Variable ranges for this challenge

The aim of this challenge is to concentrate on the optimization problem, there-
fore set sizes are limited to:

• Number of machines: 5,000

• Number of resources: 20

• Number of processes: 50,000

• Number of services: 5,000

• Number of neighborhoods: 1,000

• Number of dependencies: 5,000

• Number of locations: 1,000

• Number of balance costs: 10

All other integers are indices or 32-bits unsigned integers.
As usual in the ROADEF/EURO Challenge, three data sets will be provided:

• Data set A: number of processes is limited to 1,000. This small data set
is public and is used during the qualification phase;

• Data set B: number of processes varies from 5,000 to 50,000. This medium
/ large data set is public and is used to evaluate proposed solvers;

• Data set X: number of processes varies from 5,000 to 50,000. This medium
/ large data set is private and is used to evaluate proposed solvers.

2.4 Solution checker

In order to check if a produced solution is valid or not, and to compute the total
objective cost, the source code of a solution checker is available. The syntax is:

solution checker instance filename original solution filename new solution filename

This solution checker will be used during the challenge to evaluate produced
solutions. Note the aim is to check the solution, not the instance; so the solution
checker assumes the instance and the original solution are valid.

10


