ROADEF/EURO 2014 Challenge
Trains don’t vanish!
Rolling stock unit management on railway sites

François RAMOND
(SNCF / Innovation & Research Department)
Christian ARTIGUES, Eric BOURREAU, VINCENT JOST, SAFIA KEDAD-SIDHOUM
(ROADEF Challenge team)
Marc SEVAUX
(EURO representative)

EURO XXVI Conference – 1-4 July 2013 – ROME
SNCF Group: main figures

• Historically, French national railways company
• Today one of the leading group of sustainable mobility worldwide

250,000 employees in 120 countries.

€2.3 bn investment in 2012.

Revenue generated outside France.

24%

€33.8 bn revenue in 2012.

4 million passengers a day take our trains.
SNCF Group: 5 divisions

SNCF INFRA
- Renovation & construction
 - Includes Sferis and Eurailscout
- Projects and engineering
 - Systra
- Rail traffic
 - Direction de la Circulation Ferroviaire (DCF)

SNCF PROXIMITÉS
- TER (regional express transport by rail and road)
- Transilien (rail transport for Greater Paris)
- INTERCITÉS (standard medium and long-distance trains)
- Keolis (urban and suburban transport)

SNCF VOYAGES
- High-speed passenger rail operators
 - TGV
 - IDTGV
 - OUIGO
 - Eurostar
 - Thalys
 - TGV Lyria
 - DB/SNCF en coopération
 - NTV
 - Elipsos
 - TGV Italia
 - Westbahn
- Long-distance coach travel
 - iDBUS

SNCF GÉODIS
- Geodis
- STVA
- Rail freight (TFM)
 - Fret SNCF
 - Captrain
 - VFLI
 - VIHA
 - Multi-modal transport business
- Gestionnaires d'actifs
 - Ermenwa
 - Akiem

GARES & CONNEXIONS
- Station management & development in France
- Multi-disciplinary operations-building and outfitting facilities
 - AREP
 - Parvis
 - A2C

EURO/ROADEF 2014 Challenge - EURO XXVI Conference (1-4 July 13) - François Ramond
Operations Research at SNCF

• Long story
 – First OR studies in the 60s

• A great variety of problems
 – Rolling stock unit rostering
 – Workforce scheduling
 – Maintenance optimization
 – ...

• Two dedicated teams
 – Innovation & Research
 – IT
Major train stations …

- 15 stations > 10 million passengers / year
 - 6 in Paris, others in large French cities
 - Gare du Nord: ~200 million / year
 - Highest traffic in Europ, 2nd in the world

Source: wikipedia.org / Benjism89
... associated with major railway sites ...

• ... generally surrounded by maintenance facilities and yards
… close to saturation

- Traffic increased significantly in recent years
 - Projections forecast further increase

- Some tracks are closed in urban areas
 - Industrial areas converted into new constructions

EURO/ROADEF 2014 Challenge - EURO XXVI Conference (1-4 July 13) - François Ramond
And NOW

The problem itself!
Overview of the problem

• Resources: tracks within a local perimeter
 – Train station
 – Maintenance facilities
 – Yards
 – Tracks (moves, parking)

• Trains
 – Entering the system (Arrivals)
 – Exiting (Departures)
Overview of the problem

• Maintenance
 – Distance / time before maintenance of each arriving train
 – Requirements (distance / time) for each departure
 – Maintenance operations
 • Type D or T
 • Can be performed only on maintenance facilities

• Joint-arrival and joint-departures
 – Assembled trains coming / leaving together
 – Junction and disjunction operations to assemble and disassemble trains
Transitions between resources

• Tracks are linear resources
 – Two sides: A and B

• Gates to enter/exit a resource
 – At most one on each side for “individual” tracks
 • $A1 ; B1$
 – No restriction for yards and track groups
 • As many gates as tracks: $A1, \ldots, An ; B1, \ldots, Bm$
 • One gate to be chosen among all possibilities
 – Ordered on each side of the resource
 • Physical position of tracks
Different types of resources

• **Platform**
 – Tracks in train station
 – Required for arrival and departures
 • Boarding / unboarding of passengers
 – At most one entry point on each side
Different types of resources

• Maintenance facility
 – Track dedicated to operations either on distance or on time
 – At most one entry point on each side
Different types of resources

• Single track
 – Track outside station with no particular dedication
 – May be used for parking or to perform some moves
 – At most one entry point on each side
Different types of resources

• Yard
 – Set of tracks dedicated to storage of trains
 – Potentially a few entry points on each side
 – Capacity: number of trains
 – No internal details provided

Source: maps.google.fr
Different types of resources

• Track group
 – Set of tracks dedicated to train moves
 – Potentially a few entry points on each side
 – No internal detail provided
 – Fixed travel time
 – Headway time: minimum time between two trains on intersecting paths
 – No reverse allowed
System: composed of all types of resources
Expected solutions

• Over a n-day horizon (up to 2 weeks)
• Propose a schedule for each train
 – Train: visit in the system of a rolling stock unit
 – Either linked with an arrival
 – Or initially in the system

• Schedule of t
 – List of events associated with t
 • Enter/exit system
 • Enter/exit resource
 • Begin/end operation
Example: Schedule of Train 1

<table>
<thead>
<tr>
<th>Event type</th>
<th>Time</th>
<th>Resource</th>
<th>Gate</th>
<th>Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departure</td>
<td>07:35</td>
<td>Yard5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EnterResource</td>
<td>07:35</td>
<td>TrGroup7</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>BegJunction</td>
<td>07:38</td>
<td>Yard5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EndJunction</td>
<td>07:38</td>
<td>Yard5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExitResource</td>
<td>07:40</td>
<td>TrGroup7</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>EnterResource</td>
<td>07:40</td>
<td>TrGroup7</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>EnterResource</td>
<td>07:42</td>
<td>TrGroup8</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td>EnterResource</td>
<td>07:45</td>
<td>Facility1</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>ExitResource</td>
<td>07:45</td>
<td>Facility1</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>BeginMaintenance</td>
<td>07:45</td>
<td>Facility1</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>EndMaintenance</td>
<td>07:45</td>
<td>Facility1</td>
<td>A1</td>
<td></td>
</tr>
</tbody>
</table>

Input data

- Train 1
- Train 1 + Train 9 + Train 12

Decisions

- Departure 34
- Departure 35
- Departure 36

Joint-Departure (from input data)

- "D"
- "D"
Main decisions to make

• Assign
 – A platform for each arrival/departure
 – A train for each departure
 – A suitable resource for each operation (maintenance, junction/disjonction)

• Operations performed by trains
 – Maintenance
 – Junction/disjunction

• At which time
 – Trains move from one resource to another one
 – Trains start operations
Objectives

- Lexicographic multi-objective evaluation
 1. Min number of uncovered departures
 2. Min number of conflicts and yard overload
 3. Min operational cost
 - Over-maintenance cost
 - Junction/disjunction cost
 - Platform usage
 - Non-satisfied preferred platform assignment cost
 - Non-satisfied train reuse cost
Main types of constraints

• Schedule properties
 – Enter/exit resources, transitions between resources
 – Duration of operations

• Assignment
 – Trains to departures
 – Maintenance requirements for departures

• Resource usage
 – Limited capacities / length of tracks
 – Train order

• Assembled trains
 – Train position on platform
Conflicts between two moves

• No conflict if paths do not intersect
 – E.g.: A1-B1 and A6-B3 can be performed simultaneously

• Otherwise, conflicts detected in 2 cases:
 – Moves in same direction, headway not satisfied
 • \(| h1 - h2 | < H\)
 – Moves in opposite direction, headway not satisfied
 • \(| h1 - h2 | < T + H\)
Track groups

• Conflict detection: simplified model
 – No internal representation
 • Number of tracks, location of switches, signaling…
 – No perfect correspondence with conflicts that occur in practice
 • Only estimation of situations to avoid
 • Some situations with conflicts could be feasible in practice
 • Absence of conflicts does not mean 100% of moves are feasible
Position of trains on individual tracks

- Order of enter/exit of trains must be consistent
Your software, in practice

• Input: each instance composed of several csv files
 – Arrivals
 – Departures
 – Resource description
 – Compatibilities
 – Preferences
 – General parameters (costs, horizon)
 – …

• Output: one csv file
 – Schedules of all trains
 – Sorted by train, then by event time
Typical volume of data

- Number of days in the horizon: 1 to 14.
- Initial trains: 10 to 100.
- Arrivals: 50 to 500 per day.
- Departures: 50 to 500 per day.
- Train categories: 1 to 10.
- Single tracks: 0 to 50.
- Platforms: 10 to 50.
- Maintenance facilities: 5 to 50.
- Track groups: 5 to 20.
- Yards: 1 to 5.
Your software, in practice

- Allowed computation time: 10 mn
 - From executable launch to output file generation
- Checker can be used to evaluate solutions
 - Provided early September
 - Evaluates
 - Feasibility of solutions
 - Objective functions
- Open Source
 - Evaluation made transparent
 - Inconsistancies between problem description and checker (if any) can be detected and reported to SNCF via the forum dedicated to this challenge
Conclusion

• Industrial problem with real issues to solve
 – Integrated approach
 – Rich model, broad range of possibilities
 – Nasty constraints: be smart!

• Prospective approach
 – In practice, problem divided into many sub-problems, solved sequentially (and mostly manually) at SNCF
 – No internal tool to compare with
 – Analysis of solutions by experts: changes might be introduced at the end of qualification