Introduction to robust optimization

Michael POSS

May 30, 2017

Outline

(1) General overview

(2) Static problems
(3) Adjustable RO
(4) Two-stages problems with real recourse
(5) Multi-stage problems with real recourse

6 Multi-stage with integer recourse

Robust optimization

(1) How much do we know ?

Mean value
(Deterministic)

Stochastic

Robust optimization

(2) Worst-case approach

static VS adjustable

Static decisions \rightarrow uncertainty revealed
Complexity Easy for LP $\odot, \mathcal{N} \mathcal{P}$-hard for combinatorial optimization \odot MILP reformulation ©

Two-stages decisions \rightarrow uncertainty revealed \rightarrow more decisions

Multi-stages decisions \rightarrow uncertainty \rightarrow decisions \rightarrow uncertainty \rightarrow Complexity $\mathcal{N} \mathcal{P}$-hard for IP \otimes, cannot be solved to ontimality \otimes

static VS adjustable

Static decisions \rightarrow uncertainty revealed
Complexity Easy for LP $\odot, \mathcal{N} \mathcal{P}$-hard for combinatorial optimization \odot MILP reformulation ©

Two-stages decisions \rightarrow uncertainty revealed \rightarrow more decisions Complexity $\mathcal{N} \mathcal{P}$-hard for LP © $^{\text {, }}$, decomposition algorithms $)$

> Multi-stages decisions \rightarrow uncertainty \rightarrow decisions \rightarrow uncertainty \rightarrow Complexity $\mathcal{N} \mathcal{P}$-hard for LP \odot, cannot be solved to optimality \odot

static VS adjustable

Static decisions \rightarrow uncertainty revealed
Complexity Easy for LP $\odot, \mathcal{N} \mathcal{P}$-hard for combinatorial optimization \odot MILP reformulation ©

Two-stages decisions \rightarrow uncertainty revealed \rightarrow more decisions
Complexity $\mathcal{N} \mathcal{P}$-hard for LP © $^{\text {, }}$, decomposition algorithms $)$

Multi-stages decisions \rightarrow uncertainty \rightarrow decisions \rightarrow uncertainty $\rightarrow \ldots$
Complexity $\mathcal{N} \mathcal{P}$-hard for LP \odot, cannot be solved to optimality \odot

discrete uncertainty VS convex uncertainty

$$
\mathcal{U}=\operatorname{vertices}(\mathcal{P})
$$

U

Observation

In many cases, $\mathcal{U} \sim \mathcal{P}$.

Exceptions:

- robust constraints $f(x, u) \leq b$ and f non-concave in u
- multi-stages problems with integer adiustable variables

discrete uncertainty VS convex uncertainty

$$
\mathcal{U}=\operatorname{vertices}(\mathcal{P})
$$

Observation

In many cases, $\mathcal{U} \sim \mathcal{P}$.
Exceptions:

- robust constraints $f(x, u) \leq b$ and f non-concave in u
- multi-stages problems with integer adjustable variables

Outline

(1) General overview

(2) Static problems
(3) Adjustable RO
(4) Two-stages problems with real recourse
(5) Multi-stage problems with real recourse

6 Multi-stage with integer recourse

Robust combinatorial optimization

Combinatorial problem

- $\mathcal{X} \subseteq\{0,1\}^{n}, u_{0} \in \mathbb{R}^{n}$

$$
C O \quad \min _{x \in \mathcal{X}} u_{0}^{T} x
$$

Robust counterparts with cost uncertainty

Robust combinatorial optimization

Combinatorial problem

- $\mathcal{X} \subseteq\{0,1\}^{n}, u_{0} \in \mathbb{R}^{n}$

$$
\operatorname{CO} \quad \min _{x \in \mathcal{X}} u_{0}^{T} x
$$

Robust counterparts with cost uncertainty
(1) $\mathcal{X} \subseteq\{0,1\}^{n}, \mathcal{U} \subset \mathbb{R}^{n}$

$$
\mathcal{U}-C O \quad \min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u_{0}^{T} x
$$

(2) Regret version:

Robust combinatorial optimization

Combinatorial problem

- $\mathcal{X} \subseteq\{0,1\}^{n}, u_{0} \in \mathbb{R}^{n}$

$$
\operatorname{CO} \quad \min _{x \in \mathcal{X}} u_{0}^{T} x
$$

Robust counterparts with cost uncertainty
(1) $\mathcal{X} \subseteq\{0,1\}^{n}, \mathcal{U} \subset \mathbb{R}^{n}$

$$
\mathcal{U}-C O \quad \min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u_{0}^{T} x
$$

(2) Regret version:

$$
\min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}}\left(u_{0}^{T} x-\min _{y \in \mathcal{X}} u_{0}^{T} y\right)
$$

Robust combinatorial optimization

Combinatorial problem

- $\mathcal{X} \subseteq\{0,1\}^{n}, u_{0} \in \mathbb{R}^{n}$

$$
C O \quad \min _{x \in \mathcal{X}} u_{0}^{T} x
$$

Robust counterparts with cost uncertainty
(1) $\mathcal{X} \subseteq\{0,1\}^{n}, \mathcal{U} \subset \mathbb{R}^{n}$

$$
\mathcal{U}-C O \quad \min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u_{0}^{T} x
$$

(2) Regret version:

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}}\left(u_{0}^{T} x-\min _{y \in \mathcal{X}} u_{0}^{T} y\right) \\
=\quad & \min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} \min _{y \in \mathcal{X}}\left(u_{0}^{T} x-u_{0}^{T} y\right)
\end{aligned}
$$

General robust counterpart

$\mathcal{X}=\mathcal{X}^{\text {comb }} \cap \mathcal{X}^{\text {num }}:$
$\mathcal{X}^{\text {comb }}$ Combinatorial nature, known.
$\mathcal{X}^{\text {num }}$ Numerical uncertainty: $u_{j}^{\top} x \leq b_{j}, j=1, \ldots, m$, uncertain.

Robust counterpart

U-CO

General robust counterpart

$\mathcal{X}=\mathcal{X}^{\text {comb }} \cap \mathcal{X}^{\text {num }}:$
$\mathcal{X}^{\text {comb }}$ Combinatorial nature, known.
$\mathcal{X}^{\text {num }}$ Numerical uncertainty: $u_{j}^{T} x \leq b_{j}, j=1, \ldots, m$, uncertain.

Robust counterpart

$$
\operatorname{Uin}\left\{\begin{array}{l}
\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} x: \\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}, \\
\left.x \in \mathcal{X}^{\text {comb }}\right\} . \tag{2}
\end{array}\right.
$$

Examples: knapsack, constrained shortest path

General robust counterpart

$\mathcal{X}=\mathcal{X}^{\text {comb }} \cap \mathcal{X}^{\text {num }}:$
$\mathcal{X}^{\text {comb }}$ Combinatorial nature, known.
$\mathcal{X}^{\text {num }}$ Numerical uncertainty: $u_{j}^{T} x \leq b_{j}, j=1, \ldots, m$, uncertain.

Robust counterpart

$$
\min \left\{\begin{array}{l}
\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} x: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}, \\
 \tag{4}\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

Examples: knapsack, constrained shortest path

General robust counterpart

$$
\mathcal{X}=\mathcal{X}^{\text {comb }} \cap \mathcal{X}^{\text {num }}:
$$

$\mathcal{X}^{\text {comb }}$ Combinatorial nature, known.
$\mathcal{X}^{\text {num }}$ Numerical uncertainty: $u_{j}^{T} x \leq b_{j}, j=1, \ldots, m$, uncertain.

Robust counterpart

$$
\begin{align*}
\min \{ & z: \tag{1}\\
& u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j} \tag{2}\\
& u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0} \tag{3}\\
& a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \tag{4}\\
& \left.x \in\{0,1\}^{n} \quad\right\} \tag{5}
\end{align*}
$$

[^0]
General robust counterpart

$$
\mathcal{X}=\mathcal{X}^{\text {comb }} \cap \mathcal{X}^{\text {num }}:
$$

$\mathcal{X}^{\text {comb }}$ Combinatorial nature, known.
$\mathcal{X}^{\text {num }}$ Numerical uncertainty: $u_{j}^{T} x \leq b_{j}, j=1, \ldots, m$, uncertain.

Robust counterpart

$$
\operatorname{U}-\mathrm{CO} \begin{align*}
& \min \{ \tag{1}\\
& \\
& \tag{2}\\
& u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j} \tag{3}\\
& \tag{4}\\
& u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0} \tag{5}\\
& \\
& \\
& a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
& \\
& \\
& \left.x \in\{0,1\}^{n}\right\}
\end{align*}
$$

Examples: knapsack, constrained shortest path

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N P} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB
PARTITION PROBLEM

(4) Reduction: $p=\frac{|N|}{2}$, and $\mathcal{U}=\left\{u^{1}, u^{2}\right\}$ such that

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N P} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB

© PARTITION PROBLEM

(9) Reduction: $p=\frac{|N|}{2}$, and $\mathcal{U}=\left\{u^{1}, u^{2}\right\}$ such that

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB.: $\min _{S \subseteq N,|S|=p} \max _{u \in \mathcal{U}} \sum_{i \in S} u_{i}$
© PARTITION PROBLEM

(1) Reduction:

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N P} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB.: $\min _{S \subseteq N,|S|=p} \max _{u \in \mathcal{U}} \sum_{i \in S} u_{i}$
(3) PARTITION PROBLEM: $\min _{S \subseteq N,|S|=|N| / 2} \max \left(\sum_{i \in S} a_{i}, \sum_{i \in N \backslash S} a_{i}\right)$
(c) Reduction: $p=\frac{|N|}{2}$, and $\mathcal{U}=\left\{u^{1}, u^{2}\right\}$ such that

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, \ldots are $\mathcal{N} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB.: $\min _{S \subseteq N,|S|=p} \max _{u \in \mathcal{U}} \sum_{i \in S} u_{i}$
(3) PARTITION PROBLEM: $\min _{S \subseteq N,|S|=|N| / 2} \max \left(\sum_{i \in S} a_{i}, \sum_{i \in N \backslash S} a_{i}\right)$
(9) Reduction: $p=\frac{|N|}{2}$, and $\mathcal{U}=\left\{u^{1}, u^{2}\right\}$ such that

$$
\begin{aligned}
& u_{i}^{1}=a_{i} \quad \text { and } \quad u_{i}^{2}=\frac{2}{|N|} \sum_{k} a_{k}-a_{i} \\
& \Rightarrow \quad \max _{u \in \mathcal{U}} \sum_{i \in S} u_{i}=\max \left(\sum_{i \in S} a_{i}, \sum_{i \in N \backslash S} a_{i}\right)
\end{aligned}
$$

polyhedral uncertainty: \mathcal{U}-CO is still hard (but solvable)

Theorem

The robust shortest path, assignment, spanning tree, \ldots are $\mathcal{N} \mathcal{P}$-hard even when \mathcal{U} has a compact description.

Proof.

Theorem (Ben-Tal and Nemirovski [1998])

Problem U-CO is equivalent to a mixed-integer linear program

polyhedral uncertainty: \mathcal{U}-CO is still hard (but solvable)

Theorem

The robust shortest path, assignment, spanning tree, \ldots are $\mathcal{N} \mathcal{P}$-hard even when \mathcal{U} has a compact description.

Proof.

(1) $\mathcal{U}=\operatorname{conv}\left(u^{1}, u^{2}\right) \Rightarrow n$ equalities and 2 inequalities

Theorem (Ben-Tal and Nemirovski [1998])

Problem U-CO is equivalent to a mixed-integer linear program.

polyhedral uncertainty: \mathcal{U}-CO is still hard (but solvable)

Theorem

The robust shortest path, assignment, spanning tree, \ldots are $\mathcal{N} \mathcal{P}$-hard even when \mathcal{U} has a compact description.

Proof.

(1) $\mathcal{U}=\operatorname{conv}\left(u^{1}, u^{2}\right) \Rightarrow n$ equalities and 2 inequalities
(2) $u^{T} x \leq b, \quad u \in \mathcal{U} \quad \Leftrightarrow \quad u^{T} x \leq b, \quad u \in \operatorname{ext}(\mathcal{U})$

Theorem (Ben-Tal and Nemirovski [1998])

Problem U-CO is equivalent to a mixed-integer linear program.

polyhedral uncertainty: \mathcal{U}-CO is still hard (but solvable)

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N} \mathcal{P}$-hard even when \mathcal{U} has a compact description.

Proof.

(1) $\mathcal{U}=\operatorname{conv}\left(u^{1}, u^{2}\right) \Rightarrow n$ equalities and 2 inequalities
(2) $u^{T} x \leq b, \quad u \in \mathcal{U} \quad \Leftrightarrow \quad u^{T} x \leq b, \quad u \in \operatorname{ext}(\mathcal{U})$

Theorem (Ben-Tal and Nemirovski [1998])

Problem $\mathcal{U}-\mathrm{CO}$ is equivalent to a mixed-integer linear program.

Dualization - cost uncertainty

Theorem (Ben-Tal and Nemirovski [1998])

Consider $\alpha \in \mathbb{R}^{1 \times n}$ and $\beta \in \mathbb{R}^{\prime}$ that define polytope

$$
\mathcal{U}:=\left\{u \in \mathbb{R}_{+}^{n}: \alpha_{k}^{T} u \leq \beta_{k}, k=1, \ldots, l\right\} .
$$

Problem $\min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u^{T} x$ is equivalent to a compact MILP. $x \in \mathcal{X} \quad u \in \mathcal{U}$

Proof.

Dualizing the inner maximization: $\min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u^{T} x=$
$\min _{x \in \mathcal{X}} \min \left\{\sum_{k=1}^{1} \beta_{k} z_{k}: \sum_{k=1}^{1} \alpha_{k i} z_{k} \geq x_{i}, i=1, \ldots, n, z \geq 0\right\}$,

Robust constraint (e.g. the knapsack)

Dualization - cost uncertainty

Theorem (Ben-Tal and Nemirovski [1998])

Consider $\alpha \in \mathbb{R}^{1 \times n}$ and $\beta \in \mathbb{R}^{\prime}$ that define polytope

$$
\mathcal{U}:=\left\{u \in \mathbb{R}_{+}^{n}: \alpha_{k}^{T} u \leq \beta_{k}, k=1, \ldots, l\right\} .
$$

Problem $\min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u^{T} x$ is equivalent to a compact MILP. $x \in \mathcal{X} \quad u \in \mathcal{U}$

Proof.

Dualizing the inner maximization: $\min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u^{T} x=$
$\min _{x \in \mathcal{X}} \min \left\{\sum_{k=1}^{1} \beta_{k} z_{k}: \sum_{k=1}^{1} \alpha_{k i} z_{k} \geq x_{i}, i=1, \ldots, n, z \geq 0\right\}$,

Robust constraint (e.g. the knapsack)

Dualization - cost uncertainty

Theorem (Ben-Tal and Nemirovski [1998])

Consider $\alpha \in \mathbb{R}^{1 \times n}$ and $\beta \in \mathbb{R}^{\prime}$ that define polytope

$$
\mathcal{U}:=\left\{u \in \mathbb{R}_{+}^{n}: \alpha_{k}^{T} u \leq \beta_{k}, k=1, \ldots, l\right\} .
$$

Problem $\min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u^{T} x$ is equivalent to a compact MILP. $x \in \mathcal{X} \quad u \in \mathcal{U}$

Proof.

Dualizing the inner maximization: $\min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u^{T} x=$
$\min _{x \in \mathcal{X}} \min \left\{\sum_{k=1}^{1} \beta_{k} z_{k}: \sum_{k=1}^{1} \alpha_{k i} z_{k} \geq x_{i}, i=1, \ldots, n, z \geq 0\right\}$,
Robust constraint (e.g. the knapsack)

Cutting plane algorithms [Bertsimas et al., 2016]

$\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}$
Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

Cutting plane algorithms [Bertsimas et al., 2016]

$\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}$
Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

(1) Solve $M P \rightarrow \operatorname{get} \tilde{x}, \tilde{z}$
(2) Solve $\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} \tilde{x}$ and $\max _{u_{j} \in \mathcal{U}_{j}} u_{j}^{\top} \tilde{x} \rightarrow$ get $\tilde{u}_{0}, \ldots, \tilde{u}_{m}$
(3) If $\tilde{u}_{0}^{T} \tilde{x}>\tilde{z}$ or $\tilde{u}_{j}^{T} \tilde{x}>b_{j}$ then

Cutting plane algorithms [Bertsimas et al., 2016]

$\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}$
Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

(1) Solve $M P \rightarrow \operatorname{get} \tilde{x}, \tilde{z}$
(2) Solve $\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} \tilde{x}$ and $\max _{u_{j} \in \mathcal{U}_{j}} u_{j}^{T} \tilde{x} \rightarrow$ get $\tilde{u}_{0}, \ldots, \tilde{u}_{m}$
(3) If $\tilde{u}_{0}^{T} \tilde{x}>\tilde{z}$ or $\tilde{u}_{j}^{T} \tilde{x}>b_{j}$ then

Cutting plane algorithms [Bertsimas et al., 2016]

$\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}$
Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

(1) Solve $M P \rightarrow \operatorname{get} \tilde{x}, \tilde{z}$
(2) Solve $\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} \tilde{x}$ and $\max _{u_{j} \in \mathcal{U}_{j}} u_{j}^{T} \tilde{x} \rightarrow$ get $\tilde{u}_{0}, \ldots, \tilde{u}_{m}$
(3) If $\tilde{u}_{0}^{T} \tilde{x}>\tilde{z}$ or $\tilde{u}_{j}^{T} \tilde{x}>b_{j}$ then

Cutting plane algorithms [Bertsimas et al., 2016]

$\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}$
Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

(1) Solve MP \rightarrow get \tilde{x}, \tilde{z}
(2) Solve $\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} \tilde{x}$ and $\max _{u_{j} \in \mathcal{U}_{j}} u_{j}^{T} \tilde{x} \rightarrow$ get $\tilde{u}_{0}, \ldots, \tilde{u}_{m}$
(3) If $\tilde{u}_{0}^{T} \tilde{x}>\tilde{z}$ or $\tilde{u}_{j}^{T} \tilde{x}>b_{j}$ then

- $\mathcal{U}_{0}^{*} \leftarrow \mathcal{U}_{0}^{*} \cup\left\{\tilde{u}_{0}\right\}$ and $\mathcal{U}_{0}^{*} \leftarrow \mathcal{U}_{j}^{*} \cup\left\{\tilde{u}_{j}\right\}$
- go back to 1

Simpler structure: \mathcal{U}^{Γ}-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

Simpler structure: \mathcal{U}^{Γ}-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

$\mathcal{U}^{\ulcorner }=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n\right.$

Simpler structure: \mathcal{U}^{Γ}-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

$$
\mathcal{U}^{\ulcorner }=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq \Gamma\right\}
$$

Simpler structure: \mathcal{U}^{Γ}-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

$$
\begin{aligned}
& \bar{u}_{2}+\hat{u}_{2} \\
& \mathcal{U}^{\Gamma}=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq 2\right\}
\end{aligned}
$$

Simpler structure: \mathcal{U}^{Γ}-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

$$
\mathcal{U}^{\ulcorner }=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq 1.5\right\}
$$

Simpler structure: \mathcal{U}^{Γ}-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

$$
\mathcal{U}^{\ulcorner }=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq 1\right\}
$$

Iterative algorithms for \mathcal{U}^{Γ}

$$
\mathcal{P}=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq \Gamma\right\}
$$

Theorem (Bertsimas and Sim [2003], Goetzmann et al. [2011], Álvarez-Miranda et al. [2013], Lee and Kwon [2014])

Cost uncertainty $\mathcal{U}^{\Gamma}-\mathrm{CO} \Rightarrow$ solving $\sim n / 2$ problems $C O$.
Numerical uncertainty $\mathcal{U}^{\Gamma}-\mathrm{CO} \Rightarrow$ solving $\sim(n / 2)^{m}$ problems $C O$.

Iterative algorithms for $\mathcal{U}\ulcorner$

$$
\mathcal{U}^{\ulcorner }=\text {vertices }\left(\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq \Gamma\right\}\right)
$$

Theorem (Bertsimas and Sim [2003], Goetzmann et al. [2011], Álvarez-Miranda et al. [2013], Lee and Kwon [2014])

> Cost uncertainty $\mathcal{U}^{\Gamma}-\mathrm{CO} \Rightarrow$ solving $\sim n / 2$ problems CO .

\square
Numerical uncertainty $\mathcal{U}^{\Gamma}-\mathrm{CO} \Rightarrow$ solving $\sim(n / 2)^{m}$ problems CO .

Iterative algorithms for \mathcal{U}^{Γ}

$$
\mathcal{U}^{\Gamma}=\text { vertices }\left(\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq \Gamma\right\}\right)
$$

Theorem (Bertsimas and Sim [2003], Goetzmann et al. [2011], Álvarez-Miranda et al. [2013], Lee and Kwon [2014])

Cost uncertainty $\mathcal{U}^{\Gamma}-\mathrm{CO} \Rightarrow$ solving $\sim n / 2$ problems $C O$.
Numerical uncertainty $\mathcal{U}^{\Gamma}-C O \Rightarrow$ solving $\sim(n / 2)^{m}$ problems $C O$.

Other convex \mathcal{U} (recall that $\mathcal{U} \Leftrightarrow \operatorname{conv}(\mathcal{U})$)

$$
\left\{\bar{u} \leq u \leq \bar{u}+\hat{u}, \sum_{i=1}^{n}\left(u_{i}-\bar{u}_{i}\right) \leq \Omega\right\} \Rightarrow \text { solving } 2 \text { problems CO }
$$

[Poss, 2017]

Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]

[Mokarami and Hashemi, 2015]

$\Omega\} \Rightarrow$ solving $n \max _{i} \hat{u}_{i}$ problems CO

Other convex \mathcal{U} (recall that $\mathcal{U} \Leftrightarrow \operatorname{conv}(\mathcal{U})$)

$$
\left\{\bar{u} \leq u \leq \bar{u}+\hat{u}, \sum_{i=1}^{n}\left(u_{i}-\bar{u}_{i}\right) \leq \Omega\right\} \Rightarrow \text { solving } 2 \text { problems } C O
$$

[Poss, 2017])
$\left\{\bar{u} \leq u \leq \bar{u}+\hat{u}, \sum_{i=1}^{n} a_{i} u_{i} \leq b\right\} \Rightarrow$ solving n problems CO

Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]

[Mokarami and Hashemi, 2015]

Other convex \mathcal{U} (recall that $\mathcal{U} \Leftrightarrow \operatorname{conv}(\mathcal{U})$)

$$
\left\{\bar{u} \leq u \leq \bar{u}+\hat{u}, \sum_{i=1}^{n}\left(u_{i}-\bar{u}_{i}\right) \leq \Omega\right\} \Rightarrow \text { solving } 2 \text { problems CO }
$$

[Poss, 2017])

$$
\left\{\bar{u} \leq u \leq \bar{u}+\hat{u}, \sum_{i=1}^{n} a_{i} u_{i} \leq b\right\} \Rightarrow \text { solving } n \text { problems } C O
$$

Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]
$\left\{\bar{u} \leq u \leq \bar{u}+\hat{u}, \sum_{i=1}^{n} a_{i} u_{i} \leq b(x)\right\} \Rightarrow$ solving n problems CO
[Mokarami and Hashemi, 2015]

Other convex \mathcal{U} (recall that $\mathcal{U} \Leftrightarrow \operatorname{conv}(\mathcal{U})$)

$\left\{\bar{u} \leq u \leq \bar{u}+\hat{u}, \sum_{i=1}^{n}\left(u_{i}-\bar{u}_{i}\right) \leq \Omega\right\} \Rightarrow$ solving 2 problems CO
[Poss, 2017])
$\left\{\bar{u} \leq u \leq \bar{u}+\hat{u}, \sum_{i=1}^{n} a_{i} u_{i} \leq b\right\} \Rightarrow$ solving n problems CO
Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]
$\left\{\bar{u} \leq u \leq \bar{u}+\hat{u}, \sum_{i=1}^{n} a_{i} u_{i} \leq b(x)\right\} \Rightarrow$ solving n problems CO

[Mokarami and Hashemi, 2015]

$\left\{\sum_{i=1}^{n}\left(\frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}}\right)^{2} \leq \Omega\right\} \Rightarrow$ solving $n \max _{i} \hat{u}_{i}$ problems CO

Dynamic Programming [Klopfenstein and Nace, 2008, Monaci et al., 2013, Poss, 2014]

Classical recurrence

$$
\begin{aligned}
& F(s)=\text { cheapest cost up to state } s ; F(O)=0 \\
& F(s)=\min _{i \in q(s)}\left\{F(p(s, i))+u_{i}\right\}, \quad s \in S \backslash O
\end{aligned}
$$

Robust recurrence

$F(s, \alpha)=$ cheapest cost up to state s with α remaning deviations; $F(O, \alpha)=0$

Dynamic Programming [Klopfenstein and Nace, 2008, Monaci et al.,

 2013, Poss, 2014]

Classical recurrence

$F(s)=$ cheapest cost up to state $s ; F(O)=0$

$$
F(s)=\min _{i \in q(s)}\left\{F(p(s, i))+u_{i}\right\}, \quad s \in S \backslash O
$$

Robust recurrence

$F(s, \alpha)=$ cheapest cost up to state s with α remaning deviations; $F(O, \alpha)=0$

$$
\left\{\begin{aligned}
F(s, \alpha)= & \min _{i \in q(s)}\left\{\max \left(F(p(s, i), \alpha)+\bar{u}_{i}, F(p(s, i), \alpha-1)+\bar{u}_{i}+\hat{u}_{i}\right)\right\}, \\
F(s, 0)=\min _{i \in q(s)}\left\{F(p(s, i), 0)+\bar{u}_{i}\right\}, & s \in S \backslash O, 1 \leq \alpha \leq \Gamma, \\
& s \in S \backslash O .
\end{aligned}\right.
$$

Are all problems easy?

Hard problems must have one of
(1) non-constant number of robust "linear" constraints
(2) "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

\mathcal{U}^{Γ}-robust shortest path with time windows is $\mathcal{N} \mathcal{P}$-hard in the strong

sense.

Theorem (Bougeret et al. [2016])

Minimizing the weighted sum of completion times is $\mathcal{N P}$-hard in the strong sense.

Are all problems easy?

Hard problems must have one of
(1) non-constant number of robust "linear" constraints
(2) "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])
 \mathcal{U}^{Γ}-robust shortest path with time windows is $\mathcal{N} \mathcal{P}$-hard in the strong

sense.

Theorem (Bougeret et al. [2016])
Minimizing the weighted sum of completion times is $\mathcal{N P}$-hard in the
strong sense.

Are all problems easy?

Hard problems must have one of
(1) non-constant number of robust "linear" constraints
(2) "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

\mathcal{U}^{Γ}-robust shortest path with time windows is $\mathcal{N} \mathcal{P}$-hard in the strong sense.

Theorem (Bougeret et al. [2016])

Minimizing the weighted sum of completion times is $\mathcal{N} \mathcal{P}$-hard in the strong sense.

Are all problems easy?

Hard problems must have one of
(1) non-constant number of robust "linear" constraints
(2) "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

\mathcal{U}^{Γ}-robust shortest path with time windows is $\mathcal{N} \mathcal{P}$-hard in the strong sense.

Theorem (Bougeret et al. [2016])

Minimizing the weighted sum of completion times is $\mathcal{N P}$-hard in the strong sense.

\mathcal{U}^{Γ} - TWSP is $\mathcal{N} \mathcal{P}$-hard in the strong sense

ROBUST PATH WITH DEADLINES ($\left.\mathcal{U}^{\ulcorner-P D}\right)$

Input: Graph $D=(N, A), \hat{u}_{a}, \Gamma, \bar{u}=0$.
Question: There exists a path $p=0 \rightsquigarrow i_{2} \rightsquigarrow i_{3} \rightsquigarrow \cdots \rightsquigarrow d$

$$
\sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}, \text { for each } h=1, \ldots, l, u \in \mathcal{U}^{\ulcorner } ?
$$

INDEPENDENT SET (IS)
Input: An undirected graph $G=(V, E)$ and a positive integer K.
Question: There exists $W \subseteq V$ such that $|W| \geq K$ and $\{i, j\} \nsubseteq W$ for each $\{i, j\} \in E$?

\mathcal{U}^{Γ} - TWSP is $\mathcal{N P}$-hard in the strong sense

ROBUST PATH WITH DEADLINES $\left(\mathcal{U}^{\ulcorner }-P D\right)$
Input: Graph $D=(N, A), \hat{u}_{a}, \Gamma, \bar{u}=0$.
Question: There exists a path $p=0 \rightsquigarrow i_{2} \rightsquigarrow i_{3} \rightsquigarrow \cdots \rightsquigarrow d$

$$
\sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}, \text { for each } h=1, \ldots, l, u \in \mathcal{U}^{\ulcorner } ?
$$

INDEPENDENT SET (IS)

Input: An undirected graph $G=(V, E)$ and a positive integer K.
Question: There exists $W \subseteq V$ such that $|W| \geq K$ and $\{i, j\} \nsubseteq W$ for each $\{i, j\} \in E$?

We are given an instance of $I S$ with $|V|=n$ nodes and $|E|=m$

Set $W \subseteq V$ corresponds to path p_{W} :

- p_{W} contains $p_{2 i}$ iff $i \in W$
- p_{W} contains $p_{2 i-1}$ iff $i \notin W$

Observation

$$
\sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}, \forall u \in \mathcal{U}^{\ulcorner } \quad \Leftrightarrow \max _{u \in \mathcal{U}\ulcorner } \sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}
$$

Parameters \hat{u} and \bar{b} are chosen such that

We are given an instance of $I S$ with $|V|=n$ nodes and $|E|=m$

Set $W \subseteq V$ corresponds to path p_{W} :

- p_{W} contains $p_{2 i}$ iff $i \in W$
- p_{W} contains $p_{2 i-1}$ iff $i \notin W$

Observation

$$
\sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}, \forall u \in \mathcal{U}^{\ulcorner } \Leftrightarrow \max _{u \in \mathcal{U}^{\ulcorner }} \sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}
$$

Parameters \hat{u} and \bar{b} are chosen such that

We are given an instance of $I S$ with $|V|=n$ nodes and $|E|=m$

Set $W \subseteq V$ corresponds to path p_{W} :

- p_{W} contains $p_{2 i}$ iff $i \in W$
- p_{W} contains $p_{2 i-1}$ iff $i \notin W$

Observation

$$
\sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}, \forall u \in \mathcal{U}^{\ulcorner } \Leftrightarrow \max _{u \in \mathcal{U}\ulcorner } \sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}
$$

Parameters \hat{u} and \bar{b} are chosen such that

We are given an instance of $I S$ with $|V|=n$ nodes and $|E|=m$

Set $W \subseteq V$ corresponds to path p_{W} :

- p_{W} contains $p_{2 i}$ iff $i \in W$
- p_{W} contains $p_{2 i-1}$ iff $i \notin W$

Observation

$$
\sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}, \forall u \in \mathcal{U}^{\ulcorner } \Leftrightarrow \max _{u \in \mathcal{U}\ulcorner } \sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}
$$

Parameters \hat{u} and \bar{b} are chosen such that
(1) $\max _{u \in \mathcal{U}^{\ulcorner }} \sum_{k=1}^{n-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{n}$ for $p_{W} \Leftrightarrow|W| \geq K$

We are given an instance of $I S$ with $|V|=n$ nodes and $|E|=m$

Set $W \subseteq V$ corresponds to path p_{W} :

- p_{W} contains $p_{2 i}$ iff $i \in W$
- p_{W} contains $p_{2 i-1}$ iff $i \notin W$

Observation

$$
\sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}, \forall u \in \mathcal{U}^{\ulcorner } \Leftrightarrow \max _{u \in \mathcal{U}\ulcorner } \sum_{k=1}^{h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{i_{h}}
$$

Parameters \hat{u} and \bar{b} are chosen such that
(1) $\max _{u \in \mathcal{U}^{\ulcorner }} \sum_{k=1}^{n-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{n}$ for $p_{W} \Leftrightarrow|W| \geq K$
(2) $\max _{u \in \mathcal{U}\ulcorner } \sum_{k=1}^{n+h-1} u_{i_{k} i_{k+1}} \leq \bar{b}_{n+h}$ for $p_{W} \Leftrightarrow \quad e_{h}=\{i, j\} \nsubseteq W$

Cutting plane algorithms 2

Master problem

$$
\begin{aligned}
\min \{ & c^{T} x: \\
& f(x, u) \leq 0, \quad u \in \mathcal{U}^{*}, \\
& a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
& \left.x \in\{0,1\}^{n}\right\}
\end{aligned}
$$

Examples [Agra et al., 2016]

Cutting plane algorithms 2

Master problem

$$
\begin{aligned}
\min \{ & c^{\top} x: \\
& f(x, u) \leq 0, \quad u \in \mathcal{U}^{*}, \\
& a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
& \left.x \in\{0,1\}^{n} \quad\right\}
\end{aligned}
$$

solve $\max _{u \in \mathcal{U}} f(\tilde{x}, u) \rightarrow$ get \tilde{u}
(2) If $f(\tilde{x}, \tilde{u})>0$ then \mathcal{U}^{*}

Examples [Agra et al., 2016]

go back to ©

Cutting plane algorithms 2

Master problem

$$
\begin{aligned}
\min \{ & c^{T} x: \\
& f(x, u) \leq 0, \quad u \in \mathcal{U}^{*}, \\
& a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
& \left.x \in\{0,1\}^{n}\right\}
\end{aligned}
$$

(1) solve $M P \rightarrow$ get $\tilde{x} ; \quad$ solve $\max _{u \in \mathcal{U}} f(\tilde{x}, u) \rightarrow$ get \tilde{u}
(2) If $f(\tilde{x}, \tilde{u})>0$ then $\mathcal{U}^{*} \leftarrow \mathcal{U}^{*} \cup\{\tilde{u}\} ; \quad$ go back to (1)

Examples Agra et al., 2016

Cutting plane algorithms 2

Master problem

$$
\begin{aligned}
\min \{ & c^{T} x: \\
& f(x, u) \leq 0, \quad u \in \mathcal{U}^{*}, \\
& a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
& \left.x \in\{0,1\}^{n}\right\}
\end{aligned}
$$

(1) solve $M P \rightarrow$ get $\tilde{x} ; \quad$ solve $\max _{u \in \mathcal{U}} f(\tilde{x}, u) \rightarrow$ get \tilde{u}
(2) If $f(\tilde{x}, \tilde{u})>0$ then $\mathcal{U}^{*} \leftarrow \mathcal{U}^{*} \cup\{\tilde{u}\} ; \quad$ go back to (1)

Examples [Agra et al., 2016]

Minimizing tardiness $f(x, u)=\sum_{i=1}^{n} w_{i} \max \left\{C_{i}(x, u)-d_{i}, 0\right\}$

Cutting plane algorithms 2

Master problem

$$
\begin{aligned}
\min \{ & c^{T} x: \\
& f(x, u) \leq 0, \quad u \in \mathcal{U}^{*}, \\
& a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
& \left.x \in\{0,1\}^{n}\right\}
\end{aligned}
$$

(1) solve $M P \rightarrow$ get $\tilde{x} ; \quad$ solve $\max _{u \in \mathcal{U}} f(\tilde{x}, u) \rightarrow$ get \tilde{u}
(2) If $f(\tilde{x}, \tilde{u})>0$ then $\mathcal{U}^{*} \leftarrow \mathcal{U}^{*} \cup\{\tilde{u}\} ; \quad$ go back to (1)

Examples [Agra et al., 2016]

Minimizing tardiness $f(x, u)=\sum_{i=1}^{n} w_{i} \max \left\{C_{i}(x, u)-d_{i}, 0\right\}$
Lot-sizing $f(x, u)=\sum_{i=1}^{n} \max \left\{h_{i}\left(\sum_{j=1}^{i} x_{i}-\sum_{j=1}^{i} u_{i}\right), p_{i}\left(\sum_{j=1}^{i} u_{i}-\sum_{j=1}^{i} x_{i}\right)\right\}$

Cookbook for static problems

Dualization

good easy to apply

bad breaks combinatorial structure (e.g. shortest path)

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions
bad implementation effort

Iterative algorithms, dynamic programming
good good theoretical bounds
bad solving n^{5} problems can be too much

Cookbook for static problems

Dualization

good easy to apply
bad breaks combinatorial structure (e.g. shortest path)

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions
bad implementation effort
Iterative algorithms, dynamic programming
good good theoretical bounds
bad solving n^{5} problems can be too much

Cookbook for static problems

Dualization

> good easy to apply
bad breaks combinatorial structure (e.g. shortest path)

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions
bad implementation effort

Iterative algorithms, dynamic programming good good theoretical bounds
bad solving n^{s} problems can be too much

Open questions

Knapsack/budget uncertainty

- Easy problems that turn $\mathcal{N} \mathcal{P}$-hard
- Approximation algorithms

Scheduling seems to be a good niche.

Ellipsoidal uncertainty

Axis-parallel $\mathcal{N} \mathcal{P}$-hard in general? (known FPTAS)
General Approximation algorithms

Open questions

Knapsack/budget uncertainty

- Easy problems that turn $\mathcal{N} \mathcal{P}$-hard
- Approximation algorithms

Scheduling seems to be a good niche.

Ellipsoidal uncertainty

Axis-parallel $\mathcal{N} \mathcal{P}$-hard in general? (known FPTAS)
General Approximation algorithms

Outline

(1) General overview

(2) Static problems
(3) Adjustable RO
(4) Two-stages problems with real recourse
(5) Multi-stage problems with real recourse
(6) Multi-stage with integer recourse

2-stages example: network design

Demands vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ that must be routed non-simultaneously on a network to be designed.
\Rightarrow two-stages program:
(1) capacities
(2) routing.

Demands for scenario 1

Routing for scenario 1
Routing for scenario 2
Capacity installation

2-stages example: network design

Demands vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ that must be routed non-simultaneously on a network to be designed.
\Rightarrow two-stages program:
(1) capacities
(2) routing.

Demands for scenario 1

Routing for scenario 1

Demands for scenario 2

Capacity cost per unit

2-stages example: network design

Demands vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ that must be routed non-simultaneously on a network to be designed.
\Rightarrow two-stages program:
(1) capacities
(2) routing.

Demands for scenario 1

Routing for scenario 1

Demands for scenario 2

Routing for scenario 2

Capacity cost per unit

Capacity installation

multistage example: lot sizing

Given

- Production costs c
- Uncertain demands vectors

$$
u_{1}=\left(u_{11}, u_{12}, \ldots, u_{1 t}\right), \ldots, u_{n}=\left(u_{n 1}, u_{n 2}, \ldots, u_{n t}\right)
$$

- Storage costs h

Compute

- A production plan that minimizes the costs

multistage example: lot sizing - formulation

Variables

- $y_{i}(u)$ production at period i for demand scenario u
- $x_{i}(u)$ stock at the end of period i for demand scenario u

$$
\begin{array}{ll}
\min & \gamma \\
\text { s.t. } & \gamma \geq \sum_{i=1}^{t}\left(c_{i} y_{i}(u)+h_{i} x_{i}(u)\right) \quad u \in \mathcal{U} \\
& x_{i+1}(u)=x_{i}(u)+y_{i}(u)-u_{i} \quad i=1, \ldots, t, u \in \mathcal{U} \\
& x, y \geq 0
\end{array}
$$

multistage example: lot sizing - formulation

Variables

- $y_{i}(u)$ production at period i for demand scenario u
- $x_{i}(u)$ stock at the end of period i for demand scenario u

$$
\begin{array}{ll}
\min & \gamma \\
\text { s.t. } & \gamma \geq \sum_{i=1}^{t}\left(c_{i} y_{i}(u)+h_{i} x_{i}(u)\right) \quad u \in \mathcal{U} \\
& x_{i+1}(u)=x_{i}(u)+y_{i}(u)-u_{i} \quad i=1, \ldots, t, u \in \mathcal{U} \\
& x, y \geq 0
\end{array}
$$

Something is wrong !

Non-anticipativity - Example

Consider a lot-sizing problem with

- two different products A and B
- at most 1 unit of product (A and B together) can be produced at each period
- two time periods
- we know the demand of the current period at the beginning of the period
- two scenarios u and u^{\prime} defined as follows:

$$
u=\left[\begin{array}{ccc}
& t=1 & t=2 \\
\hline A: & 0 & 2 \\
B: & 0 & 0
\end{array}\right], \quad u^{\prime}=\left[\begin{array}{ccc}
& t=1 & t=2 \\
\hline A: & 0 & 0 \\
B: & 0 & 2
\end{array}\right]
$$

Question Propose a feasible production plan
Answer
Why? Because scenarios u and u^{\prime} cannot be distinguished at the beginning of period 1, i.e.

Non-anticipativity - Example

Consider a lot-sizing problem with

- two different products A and B
- at most 1 unit of product (A and B together) can be produced at each period
- two time periods
- we know the demand of the current period at the beginning of the period
- two scenarios u and u^{\prime} defined as follows:

$$
u=\left[\begin{array}{ccc}
& t=1 & t=2 \\
\hline A: & 0 & 2 \\
B: & 0 & 0
\end{array}\right], \quad u^{\prime}=\left[\begin{array}{ccc}
& t=1 & t=2 \\
\hline A: & 0 & 0 \\
B: & 0 & 2
\end{array}\right]
$$

Question Propose a feasible production plan Answer The problem is infeasible!
Why? Because scenarios u and u^{\prime} cannot be distinguished at the beginning of period 1, i.e.

Non-anticipativity - Example

Consider a lot-sizing problem with

- two different products A and B
- at most 1 unit of product (A and B together) can be produced at each period
- two time periods
- we know the demand of the current period at the beginning of the period
- two scenarios u and u^{\prime} defined as follows:

$$
u=\left[\begin{array}{ccc}
& t=1 & t=2 \\
\hline A: & 0 & 2 \\
B: & 0 & 0
\end{array}\right], \quad u^{\prime}=\left[\begin{array}{ccc}
& t=1 & t=2 \\
\hline A: & 0 & 0 \\
B: & 0 & 2
\end{array}\right]
$$

Question Propose a feasible production plan
Answer The problem is infeasible !
Why? Because scenarios u and u^{\prime} cannot be distinguished at the beginning of period 1, i.e.

$$
u^{1}=u^{1}
$$

Non-anticipativity - Example

Consider a lot-sizing problem with

- two different products A and B
- at most 1 unit of product (A and B together) can be produced at each period
- two time periods
- we know the demand of the current period at the beginning of the period
- two scenarios u and u^{\prime} defined as follows:

$$
u=\left[\begin{array}{ccc}
& t=1 & t=2 \\
\hline A: & 1 & 2 \\
B: & 0 & 0
\end{array}\right], \quad u^{\prime}=\left[\begin{array}{ccc}
& t=1 & t=2 \\
\hline A: & 0 & 0 \\
B: & 1 & 2
\end{array}\right]
$$

Question Propose a feasible production plan
Answer The problem is infeasible !
Why? Because scenarios u and u^{\prime} cannot be distinguished at the beginning of period 1, i.e.

$$
u^{1}=u^{1}
$$

Graphical representation - scenario tree

multistage example: lot sizing - formulation

Variables

- $y_{i}(u)$ production at period i for demand scenario u
- $x_{i}(u)$ stock at the end of period i for demand scenario u

$$
\begin{array}{ll}
\min & \gamma \\
\text { s.t. } & \gamma \geq \sum_{i=1}^{t}\left(c_{i} y_{i}(u)+h_{i} x_{i}(u)\right) \quad u \in \mathcal{U} \\
& x_{i+1}(u)=x_{i}(u)+y_{i}(u)-u_{i} \quad i=1, \ldots, t, u \in \mathcal{U} \\
& x, y \geq 0
\end{array}
$$

multistage example: lot sizing - formulation

Variables

- $y_{i}(u)$ production at period i for demand scenario u
- $x_{i}(u)$ stock at the end of period i for demand scenario u

$$
\begin{array}{lll}
\min & \gamma & \\
\text { s.t. } & \gamma \geq \sum_{i=1}^{t}\left(c_{i} y_{i}(u)+h_{i} x_{i}(u)\right) & u \in \mathcal{U} \\
& x_{i+1}(u)=x_{i}(u)+y_{i}(u)-u_{i} & i=1, \ldots, t, u \in \mathcal{U} \\
& y_{i}(u)=y_{i}\left(u^{\prime}\right) & i=1, \ldots, t, u, u^{\prime} \in \mathcal{U}, u^{i}=u^{\prime i} \\
& x, y \geq 0 &
\end{array}
$$

multistage example: lot sizing - formulation

Variables

- $y_{i}(u)$ production at period i for demand scenario u
- $x_{i}(u)$ stock at the end of period i for demand scenario u

$$
\begin{array}{ll}
\min & \gamma \\
\text { s.t. } & \gamma \geq \sum_{i=1}^{t}\left(c_{i} y_{i}\left(u^{i}\right)+h_{i} x_{i}(u)\right) \quad u \in \mathcal{U} \\
& x_{i+1}(u)=x_{i}(u)+y_{i}\left(u^{i}\right)-u_{i} \quad i=1, \ldots, t, u \in \mathcal{U} \\
& x, y \geq 0
\end{array}
$$

2-stages integer example: knapsack

Given a capacity C, and a set of items I with profits c and weights $w(u)$, find the subset of items $N \subseteq I$ that maximizes its profit

such that

for each $u \in \mathcal{U}$, we can remove items in $K(u)$ from N and the total weight satisfies

$$
\sum_{n \in N \backslash K(u)} w_{n}(u) \leq C
$$

multistage integer example: lot sizing

Variables

- $y_{i}(u)$ production at period i for demand scenario u
- $x_{i}(u)$ stock at the end of period i for demand scenario u
- $z_{i}(u)$ allowing production for period i for demand scenario u

$$
\begin{array}{lll}
\min & \gamma & \\
\text { s.t. } & \gamma \geq \sum_{i=1}^{t}\left(c_{i} y_{i}\left(u^{i}\right)+h_{i} x_{i}(u)\right) & u \in \mathcal{U} \\
& x_{i+1}(u)=x_{i}(u)+y_{i}\left(u^{i}\right)-u_{i} & i=1, \ldots, t, u \in \mathcal{U} \\
& y_{i}\left(u^{i}\right) \leq M z_{i}\left(u^{i}\right) & i=1, \ldots, t, u \in \mathcal{U} \\
& x, y \geq 0 & \\
& z \in\{0,1\}^{t|\mathcal{U}|} &
\end{array}
$$

Outline

(1) General overview

(2) Static problems
(3) Adjustable RO
(4) Two-stages problems with real recourse
(5) Multi-stage problems with real recourse
(6) Multi-stage with integer recourse

Exact solution procedure

$$
\begin{array}{lll}
& \min & c^{T} x \\
& \text { s.t. } & x \in \mathcal{X} \\
(P) & & A(u) x+E y(u) \leq b \quad u \in \mathcal{U} \tag{6}
\end{array}
$$

where $A(u)=A^{0}+\sum A_{k} u_{k}$.

Lemma

We can replace (6) by

$$
A(u) x+E y(u) \leq b \quad u \in \operatorname{ext}(\mathcal{U})
$$

Idea of the proof:

Exact solution procedure

$$
\begin{array}{lll}
& \min & c^{\top} x \\
& \text { s.t. } & x \in \mathcal{X} \\
(P) & & A(u) x+E y(u) \leq b \quad u \in \mathcal{U} \tag{6}
\end{array}
$$

where $A(u)=A^{0}+\sum A_{k} u_{k}$.

Lemma

We can replace (6) by

$$
A(u) x+E y(u) \leq b \quad u \in \operatorname{ext}(\mathcal{U})
$$

Idea of the proof:

$$
A\left(u^{*}\right) x^{*}+E y\left(u^{*}\right) \leq b \Leftrightarrow \sum_{s=1}^{\operatorname{ext}(\mathcal{U})} \lambda_{s}\left(A\left(u_{s}\right) x^{*}+E y\left(u_{s}\right)\right) \leq \sum_{s=1}^{\operatorname{ext}(\mathcal{U})} \lambda_{s} b .
$$

Master problem

$$
\begin{array}{lll}
& \min & c^{\top} x \\
\mathcal{U}^{*}-L S P^{\prime} & \text { s.t. } & x \in \mathcal{X} .
\end{array}
$$

Constraints corresponding to $u \in \mathcal{U}^{*}$

Separation

$$
\max \quad\left(b-A^{0} x^{*}\right)^{T} \pi-\sum_{k \in K}\left(A^{1 k} x^{*}\right)^{T} v^{k}
$$

(SPL) s.t. $u \in \mathcal{U}$

$$
\begin{array}{ll}
E^{T} \pi=0 & \\
\mathbf{1}^{T} \pi=1 & \\
v_{m}^{k} \geq \pi_{m}-\left(1-u^{k}\right) & k \in K, m \in M \\
v_{m}^{k} \leq u^{k} & k \in K, m \in M
\end{array}
$$

$$
\pi, v_{m}^{k} \geq 0
$$

$$
u \in\{0,1\}^{K} .
$$

Two different approaches

Benders
Row and column generation

$$
\begin{equation*}
\left(b-A\left(u^{*}\right) x\right)^{T} \pi^{*} \leq 0 . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
A\left(u^{*}\right) x+E y\left(u^{*}\right) \leq b . \tag{8}
\end{equation*}
$$

Algorithm 1: RG and RCG
repeat
solve $\mathcal{U}^{*}-L S P^{\prime}$;
let x^{*} be an optimal solution;
solve (SPL);
let $\left(u^{*}, \pi^{*}\right)$ be an optimal solution and z^{*} be the optimal solution cost; if $z^{*}>0$ then
$R G$: add constraint (7) to $\mathcal{U}^{*}-L S P^{\prime}$;
$R C G$: add constraint (8) to \mathcal{U}^{*}-LSP';

Two different approaches

Benders

Row and column generation

$$
\begin{align*}
\left(b-A\left(u^{*}\right) x\right)^{T} \pi^{*} & \leq 0 \tag{7}\\
\quad A\left(u^{*}\right) x+E y\left(u^{*}\right) & \leq b . \tag{8}
\end{align*}
$$

Algorithm 2: $R G$ and $R C G$

repeat

solve \mathcal{U}^{*}-LSP';
let x^{*} be an optimal solution;
solve (SPL);
let $\left(u^{*}, \pi^{*}\right)$ be an optimal solution and z^{*} be the optimal solution cost; if $z^{*}>0$ then
$R G$: add constraint (7) to \mathcal{U}^{*} - $L S P^{\prime}$;
$R C G$: add constraint (8) to \mathcal{U}^{*} - $L S P^{\prime}$;
until $z^{*}>0$;

Numerical results

K	Γ	$t_{R C G}$	$t_{S P L}(\%)$	iter	$t_{R G}$	$t_{P^{\prime}}$
30	2	150	64	18	4967	13
30	3	301	78	19	\mathbf{T}	213
30	4	1500	90	27	\mathbf{T}	\mathbf{M}
30	5	1344	91	25	\mathbf{T}	\mathbf{M}
40	2	365	69	21	6523	49
40	3	1037	88	22	\mathbf{T}	\mathbf{M}
40	4	6879	96	30	\mathbf{T}	\mathbf{M}
40	5	5866	95	31	\mathbf{T}	\mathbf{M}
40	6	\mathbf{T}	-	-	\mathbf{T}	\mathbf{M}
50	2	694	73	23	\mathbf{T}	98
50	3	4446	94	27	\mathbf{T}	\mathbf{M}
50	4	22645	98	35	\mathbf{T}	\mathbf{M}
50	5	\mathbf{T}	-	-	\mathbf{T}	\mathbf{M}
50	6	\mathbf{T}	-	-	\mathbf{T}	\mathbf{M}

Table: Results from Ayoub and Poss (2013) on a network design problem (Janos 26/84).

Outline

(1) General overview

(2) Static problems
(3) Adjustable RO

4 Two-stages problems with real recourse
(5) Multi-stage problems with real recourse

6 Multi-stage with integer recourse

Decision rules

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{X} \\
& A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t} \quad t=1, \ldots, T, u \in \mathcal{U}
\end{array}
$$

Decision rules

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{X} \\
& A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t} \quad t=1, \ldots, T, u \in \mathcal{U}
\end{array}
$$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.
- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal

Decision rules

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{X} \\
& A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t} \quad t=1, \ldots, T, u \in \mathcal{U}
\end{array}
$$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.

$$
y(u)=y_{0}+\sum_{k \in K} y_{k} u_{k}
$$

- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal.

Decision rules

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{X} \\
& A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t} \quad t=1, \ldots, T, u \in \mathcal{U}
\end{array}
$$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.

$$
y(u)=y_{0}+\sum_{k \in K} y_{k} u_{k}
$$

- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal

Decision rules

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{X} \\
& A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t} \quad t=1, \ldots, T, u \in \mathcal{U}
\end{array}
$$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.

$$
y(u)=y_{0}+\sum_{k \in K} y_{k} u_{k}
$$

- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal

Decision rules

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{X} \\
& A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t} \quad t=1, \ldots, T, u \in \mathcal{U}
\end{array}
$$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.

$$
y(u)=y_{0}+\sum_{k \in K} y_{k} u_{k}
$$

- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal.

Decision rules: Example for network design problem

Static $y_{k a}(u)=y_{k a} u_{k}$
Affine $y_{k a}(u)=y_{k a 0}+\sum_{h \in K} y_{k a h} u_{h}$
Dynamic $y_{k a}(u)$ is an arbitrary function

polska	0.25	$2.612 \mathrm{E}+02$	12.4	≥ 0.0
	0.1	$2.874 \mathrm{E}+02$	12.8	≥ 0.0
	0.05	$2.935 \mathrm{E}+02$	10.9	≥ 0.0
nobel-us	0.25	$2.949 \mathrm{E}+05$	10.5	≥ 0.0
	0.1	$3.156 \mathrm{E}+05$	9.2	≥ 0.0
	0.05	$3.198 \mathrm{E}+05$	7.9	≥ 0.0
atlanta	0.25	$2.001 \mathrm{E}+05$	4.7	5.4
	0.1	$2.096 \mathrm{E}+05$	3.4	3.6
	0.05	$2.117 \mathrm{E}+05$	2.7	2.7
newyork	0.25	$9.852 \mathrm{E}+02$	0.0	0.0
	0.1	$9.852 \mathrm{E}+02$	0.0	0.0
	0.05	$9.852 \mathrm{E}+02$	0.0	0.0
france	0.25	$1.040 \mathrm{E}+01$	7.7	≥ 0.0
	0.1	$1.100 \mathrm{E}+01$	6.4	≥ 0.0
	0.05	$1.120 \mathrm{E}+01$	≥ 5.4	≥ 0.0

Dual bound

Question: Can we obtain some guarantee on the quality of the affine solution ?
Answer: Using a dual model ...

Outline

(1) General overview

(2) Static problems
(3) Adjustable RO

4 Two-stages problems with real recourse
(5) Multi-stage problems with real recourse

6 Multi-stage with integer recourse

What about integer adjustable variables ?

Notation $u^{s}=\left(u_{1}, \ldots, u_{s}\right)$

Observation

Constraints (9) are not equivalent to

What about integer adjustable variables ?

Notation $u^{s}=\left(u_{1}, \ldots, u_{s}\right)$

$$
\begin{array}{lll}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{X} \\
& A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t}(u) \quad t=1, \ldots, T, u \in \mathcal{U} \tag{9}\\
& y(u) \in \mathbb{R}^{L_{1}} \times \mathbb{Z}^{L_{2}} & u \in \mathcal{U}
\end{array}
$$

Observation

Constraints (9) are not equivalent to

What about integer adjustable variables ?

Notation $u^{s}=\left(u_{1}, \ldots, u_{s}\right)$

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{X} \\
& A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t}(u) \quad t=1, \ldots, T, u \in \mathcal{U} \\
& y(u) \in \mathbb{R}^{L_{1}} \times \mathbb{Z}^{L_{2}}
\end{array} u \in \mathcal{U} .
$$

Observation

Constraints (9) are not equivalent to

$$
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t}(u) \quad t=1, \ldots, T, u \in \operatorname{ext}(\mathcal{U})
$$

2-stages example: knapsack

Solve

$$
\begin{aligned}
\max \{ & \sum_{i \in N} c_{i} x_{i} \\
\text { s.t. } & \sum_{i \in N} u_{i}\left(x_{i}-y_{i}(u)\right) \leq C \quad u \in \mathcal{U} \\
& \sum_{i \in N} y_{i}(u) \leq K \\
& x, y(u) \in\{0,1\}\}
\end{aligned}
$$

Example $(\mathcal{U} \neq \operatorname{ext}(\mathcal{U}))$

Parameters $N=\{1,2\}, \quad \bar{u}_{i}=0, \hat{u}_{i}=1, c_{i}=1, \quad C=0, \quad \Gamma=K=1$

2-stages example: knapsack

Solve

Given

$$
\begin{array}{rlr}
\max \{ & \sum_{i \in N} c_{i} x_{i} \\
\text { s.t. } & \sum_{i \in N} u_{i}\left(x_{i}-y_{i}(u)\right) \leq C & u \in \mathcal{U} \\
& \sum_{i \in N} y_{i}(u) \leq K & u \in \mathcal{U} \\
& x, y(u) \in\{0,1\}\} &
\end{array}
$$

Example $(\mathcal{U} \neq \operatorname{ext}(\mathcal{U}))$

Parameters $N=\{1,2\}, \quad \bar{u}_{i}=0, \hat{u}_{i}=1, c_{i}=1, \quad C=0, \quad \Gamma=K=1$

2-stages example: knapsack

Solve

Given

Set N

Capacity C
Weights u
Profit c
Removal limit K

$$
\left.\begin{array}{rlr}
\max \{ & \sum_{i \in N} c_{i} x_{i} \\
\text { s.t. } & \sum_{i \in N} u_{i}\left(x_{i}-y_{i}(u)\right) \leq C & u \in \mathcal{U} \\
& \sum_{i \in N} y_{i}(u) \leq K & u \in \mathcal{U} \\
& x, y(u) \in\{0,1\}
\end{array}\right\}
$$

Example $(\mathcal{U} \neq \operatorname{ext}(\mathcal{U}))$
Parameters $N=\{1,2\}, \quad \bar{u}_{i}=0, \hat{u}_{i}=1, c_{i}=1, \quad C=0, \quad \Gamma=K=1$
opt: $x_{1}=1, x_{2}=0$ with cost 1
opt: $x_{1}=x_{2}=1$ with cost 2

2-stages example: knapsack

Solve

Given

Set N

Capacity C
Weights u
Profit c
Removal limit K

$$
\begin{array}{rlr}
\max \{ & \sum_{i \in N} c_{i} x_{i} \\
\text { s.t. } & \sum_{i \in N} u_{i}\left(x_{i}-y_{i}(u)\right) \leq C & u \in \mathcal{U} \\
& \sum_{i \in N} y_{i}(u) \leq K & u \in \mathcal{U} \\
& x, y(u) \in\{0,1\}\} &
\end{array}
$$

Example $(\mathcal{U} \neq \operatorname{ext}(\mathcal{U}))$
Parameters $N=\{1,2\}, \quad \bar{u}_{i}=0, \hat{u}_{i}=1, c_{i}=1, \quad C=0, \quad \Gamma=K=1$ $\mathcal{U}^{\ulcorner }$opt: $x_{1}=1, x_{2}=0$ with cost 1 , worst $u:(0.5,0.5)$ opt: $x_{1}=x_{2}=1$ with cost 2

2-stages example: knapsack

Solve

Given

Set N

Capacity C
Weights u
Profit c
Removal limit K

$$
\begin{array}{rlr}
\max \{ & \sum_{i \in N} c_{i} x_{i} \\
\text { s.t. } & \sum_{i \in N} u_{i}\left(x_{i}-y_{i}(u)\right) \leq C & u \in \mathcal{U} \\
& \sum_{i \in N} y_{i}(u) \leq K & u \in \mathcal{U} \\
& x, y(u) \in\{0,1\}\} &
\end{array}
$$

Example $(\mathcal{U} \neq \operatorname{ext}(\mathcal{U}))$
Parameters $N=\{1,2\}, \quad \bar{u}_{i}=0, \hat{u}_{i}=1, c_{i}=1, \quad C=0, \quad \Gamma=K=1$ $\mathcal{U}^{\ulcorner }$opt: $x_{1}=1, x_{2}=0$ with cost 1 , worst $u:(0.5,0.5)$

2-stages example: knapsack

Solve

Given

Set N

Capacity C
Weights u
Profit c
Removal limit K

$$
\begin{array}{rlr}
\max \{ & \sum_{i \in N} c_{i} x_{i} \\
\text { s.t. } & \sum_{i \in N} u_{i}\left(x_{i}-y_{i}(u)\right) \leq C & u \in \mathcal{U} \\
& \sum_{i \in N} y_{i}(u) \leq K & u \in \mathcal{U} \\
& x, y(u) \in\{0,1\}\} &
\end{array}
$$

Example $(\mathcal{U} \neq \operatorname{ext}(\mathcal{U}))$

Parameters $N=\{1,2\}, \quad \bar{u}_{i}=0, \hat{u}_{i}=1, c_{i}=1, \quad C=0, \quad \Gamma=K=1$
$\mathcal{U}^{\ulcorner }$opt: $x_{1}=1, x_{2}=0$ with cost 1 , worst $u:(0.5,0.5)$
$\operatorname{ext}\left(\mathcal{U}^{\ulcorner }\right)$opt: $x_{1}=x_{2}=1$ with cost 2 worst $u:(1,0)$

2-stages example: knapsack

Solve

Given

Set N

Capacity C
Weights u
Profit c
Removal limit K

$$
\left.\begin{array}{rlr}
\max \{ & \sum_{i \in N} c_{i} x_{i} \\
\text { s.t. } & \sum_{i \in N} u_{i}\left(x_{i}-y_{i}(u)\right) \leq C & u \in \mathcal{U} \\
& \sum_{i \in N} y_{i}(u) \leq K & u \in \mathcal{U} \\
& x, y(u) \in\{0,1\}
\end{array}\right\}
$$

Example $(\mathcal{U} \neq \operatorname{ext}(\mathcal{U}))$

Parameters $N=\{1,2\}, \quad \bar{u}_{i}=0, \hat{u}_{i}=1, c_{i}=1, \quad C=0, \quad \Gamma=K=1$ $\mathcal{U}^{\ulcorner }$opt: $x_{1}=1, x_{2}=0$ with cost 1 , worst $u:(0.5,0.5)$
$\operatorname{ext}\left(\mathcal{U}^{\ulcorner }\right)$opt: $x_{1}=x_{2}=1$ with cost 2 , worst $u:(1,0)$

What to do ?

Three lines of research have been proposed in the litterature:
(1) Partitioning the uncertainty set.

- $\mathcal{U}=\mathcal{U}^{1} \cup \ldots \cup \mathcal{U}^{n}$
- Constraints

$$
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t}(u) \quad t=1, \ldots, T, u \in \mathcal{U}
$$

become

$$
\begin{array}{cc}
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s 1} \leq b_{t}(u) & t=1, \ldots, T, u \in \mathcal{U}^{1} \\
\ldots & \\
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s n} \leq b_{t}(u) & t=1, \ldots, T, u \in \mathcal{U}^{n}
\end{array}
$$

(2) Row-and-column generation algorithms by Zhao and Zeng [2012]

What to do ?

Three lines of research have been proposed in the litterature:
(1) Partitioning the uncertainty set.

- $\mathcal{U}=\mathcal{U}^{1} \cup \ldots \cup \mathcal{U}^{n}$
- Constraints

$$
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t}(u) \quad t=1, \ldots, T, u \in \mathcal{U}
$$

become

$$
\begin{array}{cc}
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s 1} \leq b_{t}(u) & t=1, \ldots, T, u \in \mathcal{U}^{1} \\
\ldots & \\
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s n} \leq b_{t}(u) & t=1, \ldots, T, u \in \mathcal{U}^{n}
\end{array}
$$

(2) Row-and-column generation algorithms by Zhao and Zeng [2012] Assumptions - Problems with complete recourse

- $\mathcal{K}(\mathcal{U})=\mathcal{K}(\operatorname{ext}(\mathcal{U}))$

Algorithms Nested row-and-column generation algorithms.

What to do ?

Three lines of research have been proposed in the litterature:
(1) Partitioning the uncertainty set.

- $\mathcal{U}=\mathcal{U}^{1} \cup \ldots \cup \mathcal{U}^{n}$
- Constraints

$$
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s}\left(u^{s}\right) \leq b_{t}(u) \quad t=1, \ldots, T, u \in \mathcal{U}
$$

become

$$
\begin{array}{cc}
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s 1} \leq b_{t}(u) & t=1, \ldots, T, u \in \mathcal{U}^{1} \\
\ldots & \\
A_{t}(u) x+\sum_{s=1}^{t} E_{t s} y_{s n} \leq b_{t}(u) & t=1, \ldots, T, u \in \mathcal{U}^{n}
\end{array}
$$

(2) Row-and-column generation algorithms by Zhao and Zeng [2012] Assumptions - Problems with complete recourse

$$
\text { - } \mathcal{K}(\mathcal{U})=\mathcal{K}(\operatorname{ext}(\mathcal{U}))
$$

Algorithms Nested row-and-column generation algorithms.
(3) Non-linear decision rules proposed by Bertsimas and Georghiou [2015]

Dynamic partition [Bertsimas and Dunning, 2016, Postek and den Hertog, 2016]

Partition $\mathcal{P}=\mathcal{U}^{1} \cup \cdots \cup \mathcal{U}^{n}$
Heuristic bound $\mathcal{U}-\operatorname{CO}(\mathcal{P})$
Algorithm
(1) Solve $\mathcal{U}-\mathrm{CO}(\mathcal{P})$
(C) Refine \mathcal{P}, go back to (1)

Partition step

- active vectors u lie in
different subsets
Voronoi diagrams

Dynamic partition [Bertsimas and Dunning, 2016, Postek and den Hertog, 2016]

Partition $\mathcal{P}=\mathcal{U}^{1} \cup \cdots \cup \mathcal{U}^{n}$
Heuristic bound $\mathcal{U}-\operatorname{CO}(\mathcal{P})$

Algorithm

(1) Solve $\mathcal{U}-\mathrm{CO}(\mathcal{P})$
(2) Refine \mathcal{P}, go back to (1)

Partition step

- active vectors u lie in
different subsets
Voronoi diagrams

Dynamic partition [Bertsimas and Dunning, 2016, Postek and den Hertog, 2016]

Partition $\mathcal{P}=\mathcal{U}^{1} \cup \cdots \cup \mathcal{U}^{n}$
Heuristic bound $\mathcal{U}-\operatorname{CO}(\mathcal{P})$

Algorithm

(1) Solve $\mathcal{U}-\mathrm{CO}(\mathcal{P})$
(2) Refine \mathcal{P}, go back to (1)

Partition step

- active vectors u lie in different subsets
\Rightarrow Voronoi diagrams

Dynamic partition [Bertsimas and Dunning, 2016, Postek and den Hertog, 2016]

Partition $\mathcal{P}=\mathcal{U}^{1} \cup \cdots \cup \mathcal{U}^{n}$
Heuristic bound $\mathcal{U}-\operatorname{CO}(\mathcal{P})$

Algorithm

(1) Solve $\mathcal{U}-\mathrm{CO}(\mathcal{P})$
(2) Refine \mathcal{P}, go back to (1)

Partition step

- active vectors u lie in different subsets
\Rightarrow Voronoi diagrams

$\mathcal{U}-\mathrm{CO}(\mathcal{P})$ dimensions increases linearly with $|\mathcal{P}|$

Comparison of Bertsimas and Georghiou [2015], Bertsimas and Dunning [2016], Postek and den Hertog [2016] on lot-sizing.

$w_{i}^{n}(u)$ order a fixed amount q_{n} at time i

Comparison of Bertsimas and Georghiou [2015], Bertsimas and Dunning [2016], Postek and den Hertog [2016] on lot-sizing.

$w_{i}^{n}(u)$ order a fixed amount q_{n} at time i

		T				
Method		4	6	8	10	
Our method (2 iter.)	Gap (\%)	13.0	10.3	11.6	14.9	
	Time (s)	0.0	0.5	7.7	108.6	
Our method (3 iter.)	Gap (\%)	11.4	9.3	11.3	14.9	
	Gime (s)	0.2	2.0	52.4	309.3	
Bertsimas and Georghiou (2015)	Time (s)	0.4	11.5	14.1	15.7	15.7
	Gap (\%)	17.2	34.5	37.6	-	
	Time (s)	3381	9181	28743	-	

Concluding remarks

Static problems

- Numerical solution by dualization or decomposition algorithms.
- \mathcal{U} "nice" structure and non-linear objective \Rightarrow interesting open problems

Adjustable problems

- Hot topic
- Very hard to solve!
- Even good generic heuristic approaches would be interesting.

Concluding remarks

Static problems

- Numerical solution by dualization or decomposition algorithms.
- \mathcal{U} "nice" structure and non-linear objective \Rightarrow interesting open problems

Adjustable problems

- Hot topic
- Very hard to solve!
- Even good generic heuristic approaches would be interesting.

SI EJCO: Robust Combinatorial Optimization

- valid inequalities for robust MILPs,
- decomposition algorithms for robust MILPs,
- constraint programming approaches to robust combinatorial optimization,
- heuristic and meta-heuristic algorithms for hard robust combinatorial problems,
- ad-hoc combinatorial algorithms,
- novel applications of robust combinatorial optimization,
- multi-stage integer robust optimization,
- recoverable robust optimization,

Deadline: July 152017

References I

Agostinho Agra, Marcio C. Santos, Dritan Nace, and Michael Poss. A dynamic programming approach for a class of robust optimization problems. SIAM Journal on Optimization, (3):1799-1823, 2016.
E. Álvarez-Miranda, I. Ljubić, and P. Toth. A note on the bertsimas \& sim algorithm for robust combinatorial optimization problems. 4OR, 11(4): 349-360, 2013.
A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations Research, 23(4):769-805, 1998.
D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Math. Program., 98(1-3):49-71, 2003.
Dimitris Bertsimas and lain Dunning. Multistage robust mixed-integer optimization with adaptive partitions, 2016. URL http://dx.doi.org/10.1287/opre.2016.1515.

References II

Dimitris Bertsimas and Angelos Georghiou. Design of near optimal decision rules in multistage adaptive mixed-integer optimization. Operations Research, 63(3):610-627, 2015. doi: 10.1287/opre.2015.1365. URL http://dx.doi.org/10.1287/opre.2015.1365.
Dimitris Bertsimas, lain Dunning, and Miles Lubin. Reformulation versus cutting-planes for robust optimization. Computational Management Science, 13(2):195-217, 2016.
M. Bougeret, Artur A. Pessoa, and M. Poss. Robust scheduling with budgeted uncertainty, 2016. Submitted.
K.-S. Goetzmann, S. Stiller, and C. Telha. Optimization over integers with robustness in cost and few constraints. In WAOA, pages 89-101, 2011.
O. Klopfenstein and D. Nace. A robust approach to the chance-constrained knapsack problem. Oper. Res. Lett., 36(5):628-632, 2008.
P. Kouvelis and G. Yu. Robust discrete optimization and its applications, volume 14. Springer Science \& Business Media, 2013.

References III

Taehan Lee and Changhyun Kwon. A short note on the robust combinatorial optimization problems with cardinality constrained uncertainty. 4OR, pages 373-378, 2014.
Shaghayegh Mokarami and S Mehdi Hashemi. Constrained shortest path with uncertain transit times. Journal of Global Optimization, 63(1): 149-163, 2015.
M. Monaci, U. Pferschy, and P. Serafini. Exact solution of the robust knapsack problem. Computers \& OR, 40(11):2625-2631, 2013.
Omid Nohadani and Kartikey Sharma. Optimization under decision-dependent uncertainty. arXiv preprint arXiv:1611.07992, 2016.
A. A. Pessoa, L. Di Puglia Pugliese, F. Guerriero, and M. Poss. Robust constrained shortest path problems under budgeted uncertainty. Networks, 66(2):98-111, 2015.
M. Poss. Robust combinatorial optimization with variable budgeted uncertainty. 4OR, 11(1):75-92, 2013.

References IV

M. Poss. Robust combinatorial optimization with variable cost uncertainty. European Journal of Operational Research, 237(3):836-845, 2014.
Michael Poss. Robust combinatorial optimization with knapsack uncertainty. 2017. Available at hal.archives-ouvertes.fr/tel-01421260.
Krzysztof Postek and Dick den Hertog. Multistage adjustable robust mixed-integer optimization via iterative splitting of the uncertainty set. INFORMS Journal on Computing, 28(3):553-574, 2016. doi: 10.1287/ijoc.2016.0696. URL http://dx.doi.org/10.1287/ijoc.2016.0696.
Long Zhao and Bo Zeng. An exact algorithm for two-stage robust optimization with mixed integer recourse problems. submitted, available on Optimization-Online. org, 2012.

[^0]: Examples: knapsack, constrained shortest path

