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The standard version

Some commodity provided by a set I of suppliers must be
dispatched to a set J of customers expressing demands.

Assume that each demand dj , for any j ∈ J, is a given integer.

The existing supply/transportation capacities are not
sufficient to meet all demands.

Increase these capacities with minimum total cost in order to
satisfy all demands.

This problem is formulated as a minimum cost maximum flow
problem defined over a network N = (V ,A) with vertex set
V = I ∪ J ∪ K ∪ {s, t} where s is a source, t is a sink, and K
is the set of transit nodes.
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The standard version

Decompose supply or transportation capability into two
parallel arcs: original and expansion arcs.

The arc set A is partitioned into A = O ∪ E ∪ D where:

O = {(s, i), for all i ∈ I} ∪ {(a, b) ∈ A : a ∈ I ∪K , b ∈ K ∪ J}
is the set of original arcs with lower bounds lab and upper
bounds uab limiting the existing supply and transportation
capacities,
E = {(s, i), for all i ∈ I} ∪ {(a, b) ∈ A : a ∈ I ∪ K , b ∈ K ∪ J}
is the set of expansion arcs corresponding to the possibility of
expanding existing supply and transportation capacities up to
Uab,
D = {(j , t), for all j ∈ J} is the set of demand arcs with
upper bounds ujt = dj and lower bounds ljt = 0, j ∈ J.
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Picture of the problem

s 1

3

2

4

t
a1, (0, 0, 6)

e3, (8, 0, 1)

a3, (5, 0, 1)

e2, (6, 0, 3)

a2, (2, 0, 1)
a4, (1, 0, 1)

e4, (2, 0, 3)

a5, (15, 0, 3)

a6, (0, 0, 2)

a7, (0, 0, 2)

Figure: Network N : values on arcs are (c , lower bound, upper bound).
I = {1}, K = {2}, and J = {3, 4}. The arc set A is partitioned into
original arcs O = {a1, a2, a3, a4, a5}, expansion arcs E = {e2, e3, e4}, and
demand arcs D = {a6, a7}. The demands are d3 = d4 = 2.
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Uncertain demands

In practice, network operators use statistical models, together
with market surveys, to forecast the evolution of demand.

Experience shows that forecasts are wrong and far from the
observed reality

Traffic measurements on a backbone network of France
Telecom, compared with the amounts forecasted one year
before, have revealed gaps up to 25% on the global amount of
traffic in the network depending on the year [BKOV’10].
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Uncertain demands

Assumptions:

Each demand dj , for any j ∈ J, can take any integer value
from interval [d j , d̄j ] independently of any other demand dh,
for h ∈ J \ {j}.
No distribution assumption is made on the uncertain demands.

The initial network can support the minimal demands d j , for
all j ∈ J.
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Two stages decision context

Decisions are actually to be made in two stages:

1 definition of a capacity expansion plan when the demand is
still unknown,
⇒ the expansion cost is known but supply and transportation
cost is estimated,

2 definition of a supply and transportation policy once the
demand is revealed,
⇒ the supply and transportation cost is known.
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Adjustable Robust Optimization (ARO) formulation

Ben-Tal et al. [BGN’09,BGN’04,BN’98] introduced the ARO
formulation in order to model this decision environment.

The ARO model requires to define an uncertainty domain
U ⊂ D = hyperrectangle formed by all intervals and excluding
the extreme combinations of demand values.

The shape of U is usually ellipsoidal [BGN’09,BGN’04,BN’98] or
polyhedral [BS’03,BS’04,TTE’09].

The definition of U requires to specify a parameter Γ
controlling the ‘size’ of U .
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Adjustable Robust Optimization (ARO) formulation

An expansion plan is robust if it is able to cope with any
demand in U .
Only expansion plans admitting a supply and transportation
policy able to satisfy any demand d ∈ U are considered.

The worst-case supply and transportation cost of any feasible
expansion plan xE is

κ(xE ,U) = max
d∈U

min
x∈F(d,xE )

cT x

where cT is the vector of the supply and transportation costs
and F(d , xE ) is the set of feasible flows satisfying exactly
demand d ∈ U and consistent with xE .
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First stage

The goal of the first stage problem is to compute an expansion
plan minimizing the worst-case total cost for all demands in U .

min
xE∈E

cARO(x
E ) = cE xE + κ(xE ,U)

where E denote the set of all feasible expansion plans and
where cE is the vector of expansion costs.
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Second stage problem

Once the demand d̃ is revealed, the goal of the second stage
problem is to compute a supply and transportation plan by
solving the following minimum cost flow problem

min
x∈F(d̃ ,x∗E )

cT x

where x∗E denote an optimal solution of the ARO model.
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Limits

The definition of an uncertainty set U ⊂ D is a non-trivial
task.

Setting a priori a specific value for Γ is uneasy.
In [BS’04,TTE’09] it is suggested that the budget of uncertainty
Γ should be of the order of

√
n where n is the number of

uncertain parameters.

No a priori guarantee on the running time can be provided for
the resulting integer, linear or conic, programs.
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Main ideas

The feasibility is not a binary state but indicates the ability to
satisfy a certain level of demand.
⇒ The Quality of Service (QoS) can be taken as a
performance measure.

If we impose to satisfy any possible demand, a totally robust
solution may have a large cost.

The decision maker may accept to reduce its requirements in
terms of guaranteed QoS depending on the cost saving.
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First stage

In order to make a decision about an expansion plan xE at the
first stage, we need to have a worst case estimate of the total
cost ĉost(xE ) and the QoS Q̂oS(xE ).

For any feasible flow x = (xO , xE , xD), where xO are flow
values on the original arcs, xE are flow values on the
expansion arcs, and xD are flow values on demand arcs

the total cost of x is

c(x) =
∑

(a,b)∈E

cEabx
E
ab + (

∑

(a,b)∈O

cTabx
O
ab +

∑

(a,b)∈E

cTabx
E
ab)

the ability of x to satisfy the maximum demand d̄ can be
defined by a QoS measure

q(x) =
1

|J|
∑

j∈J

xDjt

d̄j
or min

j∈J

xDjt

d̄j
(bottleneck)
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First stage

For any solution x = (xO , xE , xD), we show that c(x) and
q(x) provide tight worst-case guarantees of ĉost(xE ) and

Q̂oS(xE ) for any demand d ∈ D.

The conflicting criteria c(x) and q(x) can be taken as criteria
for evaluating ex ante the corresponding expansion plan xE .
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First stage

Each solution x can be represented in the criterion space by a
point (c(x), q(x)).

Definition

Since c is to be minimized and q is to be maximized, a solution x
is efficient if and only if there is no solution x ′ such that
c(x ′) 6 c(x) and q(x ′) > q(x), with at least one strict inequality.
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First stage

All the efficient points are generated and for each such point a
corresponding efficient solution is provided.
⇒ potentially robust solutions.

The decision maker chooses a non-dominated point,
associated with a potentially robust solution x̄ , offering the
best tradeoff between guaranteed cost and QoS.

This way he/she selects an expansion plan, characterized by
variables x̄E , for which we guarantee that, for any demand
d ∈ D, the total cost will be at most ĉost(x̄E ) = c(x̄) and the

QoS will be at least Q̂oS(x̄E ) = q(x̄).
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First stage

In this bi-objective formulation, the network N is completed by
adding on each arc the estimate QoS criterion values.

a b j t

(cTab + cEab, 0, 0, Uab − uab)

(cTab, 0, lab, uab )

(0, 1/|J|d̄j
, d j , d̄j )

Figure: Network N : values on arcs are (c , q, lower bound, upper bound).
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Second stage

Once the demand d̃ is revealed, we exhibit a supply and
transportation plan y(x̄E , d̃) which is both consistent with the
expansion plan x̄E and the conflicting guarantees that its total
cost will be at most ĉost(x̄E ) and its QoS will be at least

Q̂oS(x̄E ).

For this purpose, we just need to solve a minimum cost
maximum flow problem on a network N ′

a b j t
(cTab, lab, uab + x̄Eab )

(0, d j ,min{x̄Djt , d̃j})

Figure: Network N ′: values on arcs are (cost, lower bound, upper
bound).
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Second stage

The total cost of solution x̄ selected in the first stage is

cost(x̄E , d̃) =
∑

(a,b)∈E

cEab x̄
E
ab + CT (y(x̄E , d̃)),

where CT (y(x̄E , d̃)) denote the optimal supply and transportation
cost and its QoS is

QoS(x̄E , d̃) =
1

|J|
∑

j∈J

yjt(x̄
E , d̃)

d̃j
.
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Properties of exact and approximate cost and QoS criteria

Proposition

Let x = (xE , xO , xD) be any feasible flow in N and d̃ ∈ D be any
revealed demand, we have:

(i) cost(xE , d̃) 6 ĉost(xE ),

(ii) if x is efficient and d̃ > xD , then ĉost(xE ) = cost(xE , d̃).

(iii) QoS(xE , d̃) > Q̂oS(xE ) for any d̃ ∈ D,

(iv) Q̂oS(xE ) = QoS(xE , d̄).



The capacity expansion problem Classical robustness methodology Bi-objectif approach Bi-objective flow on expansion graphs

Example

Consider the expansion graph N = (V ,A) with demands in [1; 3]
(d̄3 = d̄4 = 3 and d3 = d4 = 1).

s 1

3

2

4

t
a1, (0, 0, 0, 6)

e3, (8, 0, 0, 1)

a3, (5, 0, 0, 1)

e2, (6, 0, 0, 3)

a2, (2, 0, 0, 1)
a4, (1, 0, 0, 1)

e4, (2, 0, 0, 3)

a5, (15, 0, 0, 3)

a6, (0,
1
6
, 1, 3)

a7, (0,
1
6
, 1, 3)

Figure: Values on arcs are (c , q, lower bound, upper bound).
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Example

0

0.5

1.0

0 10 20 30 40 50 60 70 80

q

c
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Figure: Non-dominated points.
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Example

0
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Figure: Non-dominated points.
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Example

Assume that he/she chooses, among these non-dominated
points, a QoS of at least 0.83 and a total cost of at most 58.

The corresponding solution x̄ is defined as

s 1

3

2

4

t
a1, (0, 0, 0, 6)

5

e3, (8, 0, 0, 1)

1

a3, (5, 0, 0, 1)

1

e2, (6, 0, 0, 3)

2

a2, (2, 0, 0, 1)

1
a4, (1, 0, 0, 1)

1

e4, (2, 0, 0, 3)

0

a5, (15, 0, 0, 3)
2

a6, (0,
1
6
, 1, 3)

3

a7, (0,
1
6
, 1, 3)

2

Figure: Network N : values on arcs are (c , q, lower bound, upper
bound). The expansion cost is 11.
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Example

Suppose now that the real demand is d̃3 = 2 and d̃4 = 3.

The second stage problem consists of solving the minimum
cost maximum flow problem defined over graph N ′

s 1

3

2

4

t
(0, 0, 6)

4

(5, 0, 2)

1

(2, 0, 3)

3
(1, 0, 1)

1

(15, 0, 3)

2

(0, 1, 2)

2

(0, 1, 2)

2

Figure: Values on arcs are (cost, lower bound, upper bound). The

supply and transportation cost CT (y(x̄E , d̃)) = 42, and the total

cost is cost(x̄E , d̃) = 53. The quality of service is

QoS(x̄E , d̃) = 1
2 (

2
2 + 2

3) = 0.83.
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Example

Demand cost QoS

d̃3 d̃4

1 1 31 1
1 2 48 1
1 3 48 0.83
2 1 36 1
2 2 53 1
2 3 53 0.83
3 1 41 1
3 2 58 1
3 3 58 0.83

Table: Cost and QoS of solution x̄ for all possible real demands.
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Comparison with the standard ARO model

The ARO model provides conclusions like ‘with a probability
at least w , the proposed robust solution is feasible and has a
cost at most x ’.

Our robust approach provides conclusions like ‘the proposed
robust solution guarantees a cost at most y and a QoS at
least z ’.

Our model computes all the interesting values of worst-case
costs and QoS.
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Comparison with the standard ARO model

For any feasible expansion xE ∈ E , the ARO model provides a
supply and transportation plan with a QoS 1 for all demands
in U . No guarantees are given for demands in D \ U which
may occur with a (small) nonzero probability.

Our model computes for each expansion plan xE a supply and
transportation plan which may partially satisfy any demand in
U or in D \ U .
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Comparison with the standard ARO model

Does an optimal solution of the ARO model corresponds to a
non-dominated solution in our model?

If any non-dominated solution is an optimal solution of the
ARO model for some uncertainty set?



The capacity expansion problem Classical robustness methodology Bi-objectif approach Bi-objective flow on expansion graphs

Interpreting the guarantees of the ARO model in our
framework

An uncertainty set U ⊆ D can be interpreted as imposing a
minimum QoS level

q∗(U) = max
d∈U

1

|J|
∑

j∈J

dj

d̄j
.

Proposition

For any feasible expansion plan xE ∈ E , our model outputs an
efficient solution x̄ = (x̄O , x̄E , x̄D) whose associated expansion
plan x̄E guarantees a worst case total cost ĉost(x̄E ) 6 cARO(x

E )

and a worst case QoS Q̂oS(x̄E ) > q∗(U).
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Interpreting an optimal solution of the ARO model in our
framework

Let U∗ = {d ∈ U : 1
|J|

∑
j∈J dj/d̄j = q∗(U)} and for any feasible

expansion plan xE of (11), let W(xE ,U) denote the set of
worst-case demands d ∈ argmaxd∈U minx∈F(d,xE ) c

T x .

Proposition

If there exists an optimal solution x∗E of the ARO model such that
U∗ \W(x∗E ,U) 6= ∅, our model outputs an efficient solution
x̄ = (x̄O , x̄E , x̄D) whose associated expansion plan x̄E guarantees a
worst case total cost ĉost(x̄E ) < cARO(x

E ) and a worst case QoS

Q̂oS(x̄E ) > q∗(U).
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Interpreting an efficient solution in the ARO model

Proposition

For any efficient solution x = (xO , xE , xD), there exists an
uncertainty set U(x) such that the associated expansion plan xE is
an optimal solution of the ARO model.

In particular, U(x) = {d ∈ D : d j 6 dj 6 xDjt }.
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Example

In the ARO model, suppose that U is included in the ellipse
(d3−2

0.5 )2 + (d4 − 2)2 = 1.

The optimal solution x∗E is (3,0,0) with an expansion cost 12
and a worst supply and transportation cost 59.

s 1

3

2

4

t
a1, (0, 0, 6)

5

e3, (8, 0, 1)

0

a3, (5, 0, 1)

1

e2, (6, 0, 3)

3

a2, (2, 0, 1)

1
a4, (1, 0, 1)

1

e4, (2, 0, 3)

0

a5, (15, 0, 3)
3

a6, (0, 1, 3)

2

a7, (0, 1, 3)

3

Figure: Network N : values on arcs are (c , lower bound, upper bound).
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Example

The uncertainty domain U can be interpreted in our model as
guaranteeing a QoS level q∗(U) = 0.83.

Our model outputs an efficient solution x̄ = (x̄O , x̄E , x̄D)
offering a guaranteed QoS q∗(U) but at much lower
worst-case total cost 58 (19% cost saving) for any demand
d ∈ D.
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Example

Consider the domain
U(x̄) = {d ∈ D : 1 6 d3 6 3 and 1 6 d4 6 2}.
One can verify that x̄E is the optimal solution of the ARO
model defined with the uncertainty set U(x̄).
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Abstract model

The robust capacity expansion problem can be stated as a
bi-objective flow problem on specific graphs.

By construction, each arc has a criterion vector with at most
one non-zero entry.

Each path from the source s to the sink t is formed by a
sequence of arcs (a, b) ∈ O ∪ E such that the QoS is zero,
followed by only one arc (j , t) ∈ D with zero cost and a
positive QoS.
⇒ Expansion graphs
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Complexity results

Bi-Objective Flow Bottleneck Bi-Objective Flow

on Expansion Graphs on Expansion Graphs

Complexity NP-hard Poly
Intractability Intractable Intractable

Exact algorithms Pseudo-poly* Pseudo-poly
Approximation ptas, fptas* fptas

The starred entries correspond to cases where the number of
distinct values of demands d̄ .
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