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Working out classical examples

Working out classical examples

We will work out classical examples in Stochastic Optimization

� the blood-testing problem
static, only risk

� the newsvendor problem
static, only risk

� as a startup for stock management problems
risk and time, with fixed information flow

� the secretary problem
risk and time, with handleable information flow
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Working out classical examples The blood-testing problem

The blood-testing problem (R. Dorfman)
is a static stochastic optimization problem

� A large number N of individuals are subject to a blood test

� The probability that the test is positive is p, the same for all people

� Individuals are stochastically independent

� The blood samples of k individuals are pooled and analyzed together

� If the test is negative, this one test suffices for the k people
� If the test is positive, each of the k persons must be tested separately,

and k + 1 tests are required, in all

� Find the value of k which minimizes the expected number of tests

� Find the minimal expected number of tests
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Working out classical examples The blood-testing problem

In army practice, R. Dorfman achieved savings up to 80%

� For the first pool {1, . . . , k}, the test is

� negative with probability (1− p)k (by independence) → 1 test
� positive with probability 1− (1− p)k → k + 1 tests

� When the pool size k is small compared to the number N of individuals, the
blood samples {1, . . . ,N} are split in approximately N/k groups, so that the
expected number of tests is

J(k) ≈ N

k
[(1− p)k + (k + 1)(1− (1− p)k)]

� For small p, the optimal solution is k⋆ ≈ 1/
√
p

� The minimal expected number of tests is about J⋆ ≈ 2N
√
p < N

� William Feller reports that, in army practice,
R. Dorfman achieved savings up to 80%, compared to making N tests
(take p = 1/100, giving k⋆ ≈ 10 and J⋆ ≈ N/5)
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Michel DE LARA (École des Ponts ParisTech) JFRO, Paris, 17 November 2014 November 16, 2014 8 / 88



Working out classical examples The newsvendor problem

The (single-period) newsvendor problem stands as
a classic in stochastic optimization

� Traditionally known under the terminology “newsboy problem”,
it is now coined the “newsvendor problem” ;-)

� Each morning, the newsvendor must decide how many copies
u ∈ U = {0, 1, . . .} of the day’s paper to order

� The newsvendor will meet an uncertain demand w ∈ W = {0, 1, . . .}
� The newsvendor faces an economic tradeoff

� she pays the unitary purchasing cost c per copy, when she orders stock
� she sells a copy at price p

� if she remains with an unsold copy, it is worthless (perishable good)

� Therefore, the newsvendor’s profit is uncertain,

Payoff(u,w) = − cu
︸︷︷︸

purchasing

+ pmin{u,w}
︸ ︷︷ ︸

selling

because it depends on the uncertain demand w
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Working out classical examples The newsvendor problem

For you, Nature is rather random or hostile?
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Working out classical examples The newsvendor problem

The newsvendor reveals her attitude towards risk
in how she aggregates profit with respect to uncertainty

We formulate a problem of profit maximization

� In the robust or pessimistic approach,
the newsvendor maximizes the worst payoff

max
u∈U

min
w∈W

Payoff(u,w)

︸ ︷︷ ︸

worst payoff

as if Nature were malevolent

� In the stochastic or expected approach, the newsvendor solves

max
u∈U

Ew [Payoff(u,w)]
︸ ︷︷ ︸

expected payoff

as if Nature played stochastically
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Working out classical examples The newsvendor problem

If the newsvendor maximizes the worse profit

� We suppose that

� the demand w belongs to a set W = [[w♭,w♯]]
� the newsvendor knows the set [[w♭,w♯]]

� The worse profit is

J(u) = min
w∈[[w♭,w♯]]

[−cu + pmin{u,w}] = −cu + pmin{u,w ♭}

� Show that the order u⋆ = w ♭ maximizes the above expression J(u)

� Once the newsvendor makes the optimal order u⋆ = w ♭,
the optimal profit is w 7→ (p − c)w ♭

which, here, is no longer uncertain
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Working out classical examples The newsvendor problem

If the newsvendor maximizes the expected profit

� We suppose that

� the demand w is a random variable
� the newsvendor knows the probability distribution P of w

π0 = P(w = 0), π1 = P(w = 1) . . .

� The expected profit is

J(u) = Ew [−cu + pmin{u,w}] = −cu + pE[min{u,w}]

� Find an order u⋆ which maximizes the above expression J(u)

� by calculating J(u + 1)− J(u)
� then using the decumulative distribution function d 7→ P(w > d)
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Working out classical examples The newsvendor problem

Here stand some steps of the computation

J(u) = −cu + pE[min{u,w}]
min{u,w} = u1u<w + w1u≥w

min{u + 1,w} = (u + 1)1u+1≤w + w1u+1>w

= (u + 1)1u<w + w1u≥w

min{u + 1,w} −min{u,w} = 1u<w

J(u + 1)− J(u) = −c + pE[1u<w ] = −c + pP(w > u) ↓ with u

� An optimal decision u⋆ satisfies

P(w > u⋆) ≈ c

p
=

cost

price

� Once the newsvendor makes the optimal order u⋆, the optimal profit is
the random variable w 7→ −cu⋆ + pmin{u⋆,w}
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Working out classical examples The newsvendor problem

Where do we stand after having worked out two examples?

� When you move from deterministic optimization to optimization
under uncertainty, you come accross the issue of risk attitudes

� Risk attitudes materialize in the a priori knowledge
on the uncertainties

� either probabilistic/stochastic

independence and Bernoulli distributions in the blood test example
uncertain demand faced by the newsvendor modeled as a random variable

� or set-membership

uncertain demand faced by the newsvendor modeled by a set
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Working out classical examples The newsvendor problem

Where do we stand after having worked out two examples?

� When you move from deterministic optimization to optimization
under uncertainty, you come accross the issue of risk attitudes

� Risk attitudes materialize in the a priori knowledge
on the uncertainties

� either probabilistic/stochastic

independence and Bernoulli distributions in the blood test example
uncertain demand faced by the newsvendor modeled as a random variable

� or set-membership

uncertain demand faced by the newsvendor modeled by a set

� In addition, when you make a succession of decisions, you need to specify
what you know (of the uncertainties) before each decision, and what
you know before each decision may depend or not on your previous actions

� Let us turn to the inventory problem
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Working out classical examples The inventory problem
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Working out classical examples The inventory problem

Inventory control dynamical model

Consider the control dynamical model

x(t + 1) = x(t) + u(t)− w(t)

where

� time t ∈ {t0, . . . ,T} is discrete (days, weeks or months, etc.)

� x(t) is the stock at the beginning of period t, belonging to
X = Z = {. . . ,−2,−1, 0, 1, 2, . . .}

� u(t) is the stock ordered at the beginning of period t, belonging to
U = N = {0, 1, 2, . . .}

� w(t) is the uncertain demand during the period t, belonging to W = N

(When x(t) < 0, this corresponds to a backlogged demand,
supposed to be filled immediately once inventory is again available)

Michel DE LARA (École des Ponts ParisTech) JFRO, Paris, 17 November 2014 November 16, 2014 17 / 88



Working out classical examples The inventory problem

Inventory optimization criterion

� The costs incurred in period t are
� purchasing costs: cu(t)
� shortage costs: bmax{0,−

(
x(t) + u(t)− w(t)

)
}

� holding costs: hmax{0, x(t) + u(t)− w(t)}

� On the period from t0 to T , the costs sum up to

T−1∑

t=t0

[ cu(t)
︸ ︷︷ ︸

purchasing

+

Cost(x(t)+u(t)−w(t))
︷ ︸︸ ︷

bmax{0,−
(
x(t) + u(t)− w(t)

)
}

︸ ︷︷ ︸

shortage

+ hmax{0, x(t) + u(t)− w(t)}
︸ ︷︷ ︸

holding

]
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Working out classical examples The inventory problem

Probabilistic assumptions and risk neutral formulation of
the inventory stochastic optimization problem

� We suppose that the sequence of demands w(t0), . . . , w(T − 1)
is a stochastic process with distribution P

� We consider the inventory sochastic optimization problem

min
u(·)

E

T−1∑

t=t0

[cu(t) + Cost
(
x(t) + u(t) − w(t)

)
]
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Working out classical examples The inventory problem

Information flow and closed-loop formulation of
the inventory stochastic optimization problem

� Let u(·) = u(t0), . . . , u(T − 1) and consider

min
u(·)
︸︷︷︸

meaning what?

E

T−1∑

t=t0

[cu(t) + Cost
(
x(t) + u(t)− w(t)

)
]

� The decision u(t) at time t belongs to the control set U

� u(t) is a random variable, like are all demands w(t0), . . . , w(T − 1)

� and like are all states x(t) by the dynamics x(t + 1) = x(t) + u(t)− w(t)

We express that the decision u(t) at time t depends on the past w(t0), . . . , w(t)

u(t) is measurable w.r.t. (w(t0), . . . ,w(t))
︸ ︷︷ ︸

past
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Working out classical examples The inventory problem

Where do we stand?

� In addition to risk, we have to pay attention to the information flow

� When we make a succession of decisions, we need to specify
what we know (of the uncertainties) before each decision,
and this information may depend or not on our previous actions

� Let us now turn to the secretary problem
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Working out classical examples The secretary problem

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Working out classical examples The secretary problem

The secretary problem stands as a classic
optimal stopping problem

� A firm has opened a single secretarial position to fill
(or a princess will only accept one “fiancé”)

� Secretary applicants (Alice, Bob, Claire, etc.) can be compared by
their absolute rank, corresponding to his/her quality for the position
(Alice is 7, Bob is 15, Claire has top rank 1, etc.)

� The interviewer does not know the absolute rank

� The interviewer screens N applicants one-by-one in random order
(Bob, then Claire, then Alice, etc.)

� The interviewer is able to rank the applicants interviewed so far
(for the job, Claire is better than Alice, who is better than Bob, etc.)

� After each interview, the interviewer decides

� either to select the applicant (and the process stops)
� or to reject the applicant (and the process goes on), knowing that,

once rejected, an applicant cannot be recalled
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Working out classical examples The secretary problem

Here, a strategy is a stopping rule

� There are N applicants for the position

� The value of N is known

� A strategy provides the number ν ∈ {1, . . . ,N} of applicants interviewed,
as a fonction of the relative ranking of the applicants interviewed so far

� A stopping time is a random variable ν, such that, for any n = 1, . . . ,N ,
the event {ν = n} depends at most upon what happened before interview n

� The interviewer maximizes the probability to select the best applicant,
among all strategies
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Working out classical examples The secretary problem

Open-loop strategies yield a probability 1/N

� An open-loop strategy does not use the information
collected up to applicant n, except for the clock n

� Therefore, for any n = 1, . . . ,N , the event {ν = n} depends only on n,
and not on what happened before interview n

� Thus, an open-loop strategy is a deterministic stopping time ν

� For instance, ν = 1 (constant stopping time) is an open-loop strategy:
you select the first applicant

� If you adopt the strategy ν = 1,
the probability of selecting the best applicant is 1/N

� For a fixed k ∈ {1, . . . ,N}, the strategy ν = k also yields probability 1/N
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Working out classical examples The secretary problem

The best closed loop strategy yields a probability ≈ 1/e

� A candidate is an applicant who, when interviewed,
is better than all the applicants interviewed previously

� For a fixed k ∈ {1, . . . ,N}, consider the strategy νk :

� select the first candidate popping up after k applicants have been interviewed
� or select the last applicant N in case no candidate appears

� We will now show that, when the number N of applicants is large,
the best among the strategies νk , k = 1, . . . ,N , is achieved for

k⋆ ≈ N

e
, the so-called 37% rule

� The probability of selecting the best applicant is ≈ 1/e

1

e
︸︷︷︸

closed loop

>
1

N
︸︷︷︸

open loop
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Working out classical examples The secretary problem

Here stand some steps of the computation (1)

We denote p(k) the probability to select the best applicant with strategy νk

p(k) =
n∑

m=k

P( applicant m is selected | applicant m is the best )

×P( applicant m is the best )

=

n∑

m=k

P( applicant m is selected | applicant m is the best )× 1

n

� If applicant m is the best applicant, then m is selected if and only if the best
applicant among the first m− 1 applicants is among the first k − 1 applicants
that were rejected

� Deduce that, when m ≥ k ,

P( applicant m is selected | applicant m is the best ) =
k − 1

m − 1
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Working out classical examples The secretary problem

Here stand some steps of the computation (2)

� Sum over m ≥ k and obtain

p(k) =

n∑

m=k

k − 1

m− 1
× 1

n
=

k − 1

n

n∑

m=k

1

m − 1

� Compute the difference

n[p(k + 1)− p(k)] =

n∑

m=k+1

1

m − 1
− 1

=

n∑

m=k+1

1

m − 1
− 1

≈ log n − log k − 1

= log(
n

ke
)
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Working out classical examples The secretary problem

The optimal strategy is called the 37% rule

� What is the k⋆ that maximizes p(k)? The 37% rule:

k⋆ ≈ N

e
where log e = 1

� What is p(k⋆) when N runs to +∞?

p(k⋆) ≈ 1

e
≈ 37%
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Working out classical examples The secretary problem

Where do we stand after having worked out
the secretary problem?

� In a stopping time problem, as long as you do not stop,
you collect information

� This information is valuable for forthcoming decisions

� For Markov decision problems, information is condensed in a state

� Stochastic control problems display
trade-off between exploration and exploitation
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Working out classical examples The secretary problem

Many decision problems illustrate the trade-off
between exploration and exploitation

� deciding where to dig

� animal foraging

� job search

� devoting resources to research
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Working out classical examples The secretary problem

The interplay between information and decision makes
stochastic control problems especially tricky and difficult

� Decision → information → decision → information → · · ·
� Decisions generally induce a dual effect,

a terminology which tries to convey the idea that present decisions
have two, often conflicting, effects or objectives:

� directly contributing to optimizing the cost function,
on the one hand

� modifying the future information available for forthcoming decisions,
on the other hand

� Problems with dual effect are among the most difficult
decision-making problems
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Working out classical examples The secretary problem

Summary

� Stochastic optimization = risk + information

� Risk is in the eyes of the beholder ;-)

� Information can be either revealed progressively

� in a fixed way
� or depending on past decisions

� Now, we turn to the mathematical framing of
stochastic optimization problems
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Framing stochastic optimization problems Working out a toy example
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Framing stochastic optimization problems Working out a toy example

Let us work out a toy example of economic dispatch as a
cost-minimization problem under supply-demand balance

� Production: consider two energy production units

� a “cheap” limited one with which we can produce
quantity q0, with 0 ≤ q0 ≤ q

♯
0, at cost c0q0

� an “expensive” unlimited one with which we can produce
quantity q1, with 0 ≤ q1, at cost c1q1, with c1 > c0

� Consumption: the demand is D ≥ 0

� Balance: ensuring at least the demand

D ≤ q0 + q1

� Optimization: total costs minimization

min
q0,q1

c0q0 + c1q1
︸ ︷︷ ︸

total costs
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Framing stochastic optimization problems Working out a toy example

When the demand D is deterministic,
the optimization problem is well posed

� The deterministic demand D is a single number, and we consider

min
q0,q1

c0q0 + c1q1

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1

� The solution is q⋆0 = min{q♯0,D} , q⋆1 = [D − q
♯
0]+, that is,

� if the demand D is below the capacity q
♯
0 of the “cheap” energy source

D ≤ q
♯
0 ⇒ q

⋆
0 = D , q

⋆
1 = 0

� if the demand D is above the capacity q
♯
0 of the “cheap” energy source,

D > q
♯
0 ⇒ q

⋆
0 = q

♯
0 , q

⋆
1 = D − q

♯
0

� Now, what happens when the demand D is no longer deterministic?
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Framing stochastic optimization problems Working out a toy example

If we know the demand beforehand,
the optimization problem is deterministic

� We suppose that the demand is a random variable D : Ω → R+

� If we solve the problem for each possible value D(ω) of the random
variable D, when ω ∈ Ω, we obtain

q0(ω) = min{q♯0,D(ω)} , q1(ω) = [D(ω)− q
♯
0]+

and we face an informational issue

� Indeed, we treat the demand D as if it were
observed before making the decisions q0 and q1

� When the demand D is not observed, how can we do?
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Framing stochastic optimization problems Working out a toy example

What happens if we replace the uncertain value D of

the demand by its mean D in the deterministic solution?

� If we suppose that the demand D is a random variable D : Ω → R+,
with mathematical expectation E(D) = D

� and that we propose the “deterministic solution”

q
(D)
0 = min{q♯0,D} , q

(D)
1 = [D − q

♯
0]+

� we cannot assure the inequality

D(ω)
︸ ︷︷ ︸

uncertain

≤ q0 + q1
︸ ︷︷ ︸

deterministic

, ∀ω ∈ Ω

because maxω∈Ω D(ω) > D = q
(D)
0 + q

(D)
1

� Are there better solutions among the deterministic ones?
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Framing stochastic optimization problems Working out a toy example

When the demand D is bounded above,
the robust optimization problem has a solution

� In the robust optimization problem, we minimize

min
q0,q1

c0q0 + c1q1

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D(ω) ≤ q0 + q1 , ∀ω ∈ Ω

� When D♯ = maxω∈ΩD(ω) < +∞, the solution is

q⋆0 = min{q♯0,D♯} , q⋆1 = [D♯ − q
♯
0]+

� Now, the total cost c0q
⋆
0 + c1q

⋆
1 is an increasing function

of the upper bound D♯ of the demand

� Is it not too costly to optimize under the worst-case situation?
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Framing stochastic optimization problems Working out a toy example

Where do we stand?

� When the demand D is deterministic, the optimization problem is well posed

� If we know the demand beforehand, the optimization problem is deterministic

� If we replace the uncertain value D of the demand by its mean D

in the deterministic solution, we remain with a feasability issue

� When the demand D is bounded above, the robust optimization problem has
a solution, but it is costly
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Framing stochastic optimization problems Working out a toy example

Where do we stand?

� When the demand D is deterministic, the optimization problem is well posed

� If we know the demand beforehand, the optimization problem is deterministic

� If we replace the uncertain value D of the demand by its mean D

in the deterministic solution, we remain with a feasability issue

� When the demand D is bounded above, the robust optimization problem has
a solution, but it is costly

To overcome the above difficulties, we propose to introduce stages

D(ω)
︸ ︷︷ ︸

uncertain

≤ q0
︸︷︷︸

deterministic

+ q1(ω)
︸ ︷︷ ︸

uncertain

, ∀ω ∈ Ω

� the decision q0 is made before observing the demand D(ω)

� the decision q1(ω) is made after observing the demand D(ω)
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Framing stochastic optimization problems Working out a toy example

To overcome the above difficulties,
we turn to stochastic optimization

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1
q1 depends upon D

and we emphasize two issues, new with respect to the deterministic case

� expliciting online information issue:
the decision q1 depends upon the random variable D

� expliciting risk attitudes:
we aggregate the total costs with respect to all possible values
by taking the expectation E[c0q0 + c1q1]
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Framing stochastic optimization problems Working out a toy example

Turning to stochastic optimization
forces one to specify online information

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1
q1 depends upon D

� specifying that the decision q1 depends upon the random variable D,
whereas q0 does not, forces to consider two stages
and a so-called non-anticipativity constraint (more on that later)

� first stage: q0 does not depend upon the random variable D

� second stage: q1 depends upon the random variable D
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Framing stochastic optimization problems Working out a toy example

Turning to stochastic optimization
forces one to specify risk attitudes

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1
q1 depends upon D

� Now that q1 depends upon the random variable D,
it is also a random variable, and so is the total cost c0q0 + c1q1;
therefore, we have to aggregate the total costs with respect to all possible
values, and we chose to do it by taking the expectation E[c0q0 + c1q1]
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Framing stochastic optimization problems Working out a toy example

In the uncertain framework,
two additional questions must be answered

with respect to the deterministic case

Question (expliciting risk attitudes)

How are the uncertainties taken into account
in the payoff criterion and in the constraints?

Question (expliciting available online information)

Upon which online information are decisions made?
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Framing stochastic optimization problems Scenarios are temporal sequence of uncertainties

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Framing stochastic optimization problems Scenarios are temporal sequence of uncertainties

Water inflows historical scenarios
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Framing stochastic optimization problems Scenarios are temporal sequence of uncertainties

We call scenario a temporal sequence of uncertainties

Scenarios are special cases of “states of Nature”

A scenario (pathway, chronicle) is a sequence of uncertainties

w(·) :=
(
w(t0), . . . ,w(T − 1)

)
∈ Ω := W

T−t0

HHH

HHC

HCH

HCC

CHH

CHC

CCH

CCC

El tiempo se bifurca perpetuamente hacia innumerables futuros

(Jorge Luis Borges, El jard́ın de senderos que se bifurcan)
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Framing stochastic optimization problems Scenarios are temporal sequence of uncertainties

Beware! Scenario holds a different meaning
in other scientific communities

� In practice, what modelers call a
“scenario” is a mixture of

� a sequence of uncertain variables
(also called a pathway, a
chronicle)

� a policy Pol

� and even a static or dynamical
model

� In what follows

scenario = pathway = chronicle
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Framing stochastic optimization problems Expliciting risk attitudes

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Framing stochastic optimization problems Expliciting risk attitudes

The output of a stochastic optimization problem
is a random variable. How can we rank random variables?
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Framing stochastic optimization problems Expliciting risk attitudes

How are the uncertainties taken into account
in the payoff criterion and in the constraints?

In a probabilistic setting, where uncertainties are random variables,
a classical answer is

� to take the mathematical expectation of the payoff (risk-neutral approach)

E(payoff)

� and to satisfy all (physical) constrainsts almost surely that is, practically,
for all possible issues of the uncertainties (robust approach)

P(constrainsts) = 1

But there are many other ways to handle risk: robust, worst case, risk measures,
in probability, almost surely, by penalization, etc.
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Framing stochastic optimization problems Expliciting risk attitudes

A policy and a criterion yield a real-valued payoff

Given an admissible policy Pol ∈ U
ad and a scenario w(·) ∈ Ω,

we obtain a payoff
Payoff

(
Pol,w(·)

)

Policies/Scenarios wA(·) ∈ Ω wB(·) ∈ Ω . . .

Pol1 ∈ U
ad Payoff

(
Pol1,w

A(·)
)

Payoff
(
Pol1,w

B(·)
)

. . .

Pol2 ∈ U
ad Payoff

(
Pol2,w

A(·)
)

Payoff
(
Pol2,w

B(·)
)

. . .
. . . . . . . . . . . .
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Framing stochastic optimization problems Expliciting risk attitudes

In the robust or pessimistic approach,
Nature is supposed to be malevolent,

and the DM aims at protection against all odds
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Framing stochastic optimization problems Expliciting risk attitudes

In the robust or pessimistic approach,
Nature is supposed to be malevolent

� In the robust approach, the DM considers the worst payoff

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)

︸ ︷︷ ︸

worst payoff

� Nature is supposed to be malevolent,
and specifically selects the worst scenario:
the DM plays after Nature has played, and maximizes the worst payoff

max
Pol∈Uad

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)

� Robust, pessimistic, worst-case, maximin, minimax (for costs)

Guaranteed energy production

In a dam, the minimal energy production in a given period, corresponding to the
worst water inflow scenario
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Framing stochastic optimization problems Expliciting risk attitudes

The robust approach can be softened
with plausibility weighting

� Let Θ : Ω → R ∪ {−∞} be a a plausibility function.

� The higher, the more plausible:
totally implausible scenarios are those for which Θ

(
w(·)

)
= −∞

� Nature is malevolent, and specifically selects the worst scenario,
but weighs it according to the plausibility function Θ

� The DM plays after Nature has played, and solves

max
Pol∈Uad




 min
w(·)∈Ω




Payoff

(
Pol,w(·)

)
− Θ

(
w(·)

)

︸ ︷︷ ︸

plausibility
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Framing stochastic optimization problems Expliciting risk attitudes

In the optimistic approach,
Nature is supposed to benevolent

Future. That period of time in which our affairs prosper,

our friends are true and our happiness is assured.

Ambrose Bierce

� Instead of maximizing the worst payoff as in a robust approach,
the optimistic focuses on the most favorable payoff

max
w(·)∈Ω

Payoff
(
Pol,w(·)

)

︸ ︷︷ ︸

best payoff

� Nature is supposed to benevolent, and specifically selects the best scenario:
the DM plays after Nature has played, and solves

max
Pol∈Uad

max
w(·)∈Ω

Payoff
(
Pol,w(·)

)
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Framing stochastic optimization problems Expliciting risk attitudes

The Hurwicz criterion reflects an intermediate attitude
between optimistic and pessimistic approaches

A proportion α ∈ [0, 1] graduates the level of prudence

max
Pol∈Uad

{

α

pessimistic
︷ ︸︸ ︷

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)
+(1− α) max

w(·)∈Ω
Payoff

(
Pol,w(·)

)

︸ ︷︷ ︸

optimistic

}
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Framing stochastic optimization problems Expliciting risk attitudes

In the stochastic or expected approach,
Nature is supposed to play stochastically
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Framing stochastic optimization problems Expliciting risk attitudes

In the stochastic or expected approach,
Nature is supposed to play stochastically

� The expected payoff is

mean payoff
︷ ︸︸ ︷

E

[

Payoff
(
Pol,w(·)

)
]

=
∑

w(·)∈Ω

P{w(·)}Payoff
(
Pol,w(·)

)

� Nature is supposed to play stochastically, according to distribution P:
the DM plays after Nature has played, and solves

max
Pol∈Uad

E

[

Payoff
(
Pol,w(·)

)
]

� The discounted expected utility is the special case

E

[+∞∑

t=t0

δt−t0L
(
x(t), u(t),w(t)

)
]
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Framing stochastic optimization problems Expliciting risk attitudes

The expected utility approach distorts payoffs
before taking the expectation

� We consider a utility function L to assess the utility of the payoffs
(for instance a CARA exponential utility function)

� The expected utility is

E

[

L

(

Payoff
(
Pol,w(·)

)
)]

︸ ︷︷ ︸

expected utility

=
∑

w(·)∈Ω

P{w(·)}L
(

Payoff
(
Pol,w(·)

)
)

� The expected utility maximizer solves

max
Pol∈Uad

E

[

L

(

Payoff
(
Pol,w(·)

)
)]
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Framing stochastic optimization problems Expliciting risk attitudes

The ambiguity or multi-prior approach
combines robust and expected criterion

� Different probabilities P, termed as beliefs or priors
and belonging to a set P of admissible probabilities on Ω

� The multi-prior approach combines robust and expected criterion
by taking the worst beliefs in terms of expected payoff

max
Pol∈Uad

min
P∈P

mean payoff
︷ ︸︸ ︷

E
P

[

Payoff
(
Pol,w(·)

)
]

︸ ︷︷ ︸

pessimistic over probabilities
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Framing stochastic optimization problems Expliciting risk attitudes

Convex risk measures cover a wide range of risk criteria

� Different probabilities P, termed as beliefs or priors
and belonging to a set P of admissible probabilities on Ω

� To each probability P is attached a plausibility Θ(P)

max
Pol∈Uad

min
P∈P

mean payoff
︷ ︸︸ ︷

E
P

[

Payoff
(
Pol,w(·)

)
]

−
plausibility
︷ ︸︸ ︷

Θ(P)

︸ ︷︷ ︸

pessimistic over probabilities
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Framing stochastic optimization problems Expliciting risk attitudes

Non convex risk measures can lead to non diversification

How to gamble if you must,
L.E. Dubbins and L.J. Savage,
1965

Imagine yourself at a casino with

$1,000. For some reason, you

desperately need $10,000 by morning;

anything less is worth nothing for your

purpose.

The only thing possible is to gamble

away your last cent, if need be, in an

attempt to reach the target sum of

$10,000.

� The question is how to play, not whether.
What ought you do? How should you play?

� Diversify, by playing 1 $ at a time?
� Play boldly and concentrate,

by playing 10,000 $ only one time?

� What is your decision criterion?
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Framing stochastic optimization problems Expliciting risk attitudes

Savage’s minimal regret criterion... “Had I known”

min
Pol∈Uad

{

worst regret
︷ ︸︸ ︷

max
w(·)∈Ω

[

max
anticipative policies Pol

Payoff
(
Pol,w(·)

)
− Payoff

(
Pol,w(·)

)

︸ ︷︷ ︸

regret

]}

� If the DM knows the future in advance, she solves
maxanticipative policies Pol

Payoff
(
Pol,w(·)

)
, for each scenario w(·) ∈ Ω

� The regret attached to a non-anticipative policy Pol ∈ U
ad

is the loss due to not being visionary

� The best a non-visionary DM can do with respect to regret is minimizing it
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Framing stochastic optimization problems Handling online information

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Framing stochastic optimization problems Handling online information

Upon which online information
are decisions made?

We navigate between two stumbling blocks: rigidity and wizardry

� On the one hand, it is suboptimal to restrict oneself,
as in the deterministic case,
to open-loop controls depending only upon time, thereby
ignoring the available information at the moment of making a decision

� On the other hand, it is impossible to suppose that we know in advance
what will happen for all times:
clairvoyance is impossible as well as look-ahead solutions

The in-between is non-anticipativity constraint
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Framing stochastic optimization problems Handling online information

There are two ways to express
the non-anticipativity constraint

Denote the uncertainties at time t by w(t), and the control by u(t)

� Functional approach
The control u(t) may be looked after under the form

u(t) = φt
(
w(t0), . . . ,w(t−1)
︸ ︷︷ ︸

past

)

where φt is a function, called policy, strategy or decision rule

� Algebraic approach
When uncertainties are considered as random variables (measurable
mappings), the above formula for u(t) expresses the measurability of the
control variable u(t) with respect to the past uncertainties, also written as

σ(u(t))
︸ ︷︷ ︸

σ-algebra

⊂ σ
(
w(t0), . . . ,w(t−1)
︸ ︷︷ ︸

past

)
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Framing stochastic optimization problems Handling online information

What is a solution at time t?

� In deterministic control, the solution u(t) at time t is a single vector

� In stochastic control, the solution u(t) at time t is a random variable
expressed

� either as u(t) = φt

(
w(t0), . . . ,w(t−1)

)
, where φt : W

t−t0 → R

� or as u(t) : Ω → R with measurability constraint
σ(u(t)) ⊂ σ

(
w(t0), . . . ,w(t−1)

)
or

u(t) = E

(

u(t)

∣
∣
∣
∣
w(t0), . . . ,w(t−1)

)

� Now, as time t goes on, the domain of the function φt expands,
and so do the conditions σ(u(t)) ⊂ σ

(
w(t0), . . . ,w(t−1)

)

� Therefore, for numerical reasons,
the information

(
w(t0), . . . ,w(t−1)

)
has to be compressed or approximated
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Framing stochastic optimization problems Handling online information

Scenarios can be organized like a comb or like a tree

t�✁ t�✂ t�✄ t�☎ t�✆ t�✁ t�✂ t�✄ t�☎ t�✆

◆ ✝✞✟✠✡☛☞✌✝ ❙✞✟✠✡☛☞✌✝ ✍☛✟✟
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Framing stochastic optimization problems Handling online information

There are two classical ways to compress information

� State-based functional approach
In the special case of the Markovian framework with

(
w(t0), . . . ,w(T )

)

white noise, there is no loss of optimality to look for solutions as

u(t) = ψt

(
x(t)

)

︸ ︷︷ ︸

state

where x(t) ∈ X
︸ ︷︷ ︸

fixed space

, x(t + 1) = Ft(x(t), u(t),w(t))
︸ ︷︷ ︸

dynamical equation

� Scenario-based measurability approach
Scenarios are approximated by a finite family

(
w s(t0), . . . ,w

s(T )
)
, s ∈ S

� Either solutions us(t) are indexed by s ∈ S with the constraint that

(
w

s(t0), . . . ,w
s′(t − 1)

)
=

(
w

s′(t0), . . . ,w
s′(t − 1)

)
⇒ u

s(t) = u
s′(t)

� Or — in the case of the scenario tree approach, where
the scenarios

(
w s(t0), . . . ,w

s(T )
)
, s ∈ S , are organized in a tree —

solutions un(t) are indexed by nodes n on the tree
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Framing stochastic optimization problems Handling online information

More on what is a solution at time t

State-based approach u(t) = ψt(x(t))

� The mapping ψt can be computed in advance (that is, at initial time t0)
and evaluated at time t on the available online information at that time t

� either exactly (for example, by dynamic programming)
� or approximately (for example, among linear decision rules) because the

computational burden of finding any function is heavy

� The value u(t) = ψt(x(t)) can be computed at time t

� either exactly by solving a proper optimization problem,
which raises issues of dynamic consistency

� or approximately
(for example, by assuming that controls from time t on are open-loop)
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Framing stochastic optimization problems Handling online information

More on what is a solution at time t

Scenario-based approach

� An optimal “solution” can be computed scenario by scenario,
with the problem that we obtain solutions such that

(
w s(t0), . . . ,w

s(t − 1)
)
=

(
w s′(t0), . . . ,w

s′(t − 1)
)
and us(t) 6= us

′

(t)

� Optimal solutions can be computed scenario by scenario and then merged
(for example, by Progressive Hedging) to be forced to satisfy

(
w s(t0), . . . ,w

s(t − 1)
)
=

(
w s′(t0), . . . ,w

s′(t − 1)
)
⇒ us(t) = us

′

(t)

� The value u(t) can be computed at time t depending on
(
w s(t0), . . . ,w

s(t − 1)
)

� either exactly by solving a proper optimization problem,
which raises issues of dynamic consistency

� or approximately (for example, by a sequence of two-stages problems)
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Framing stochastic optimization problems Discussing framing and resolution methods

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Framing stochastic optimization problems Discussing framing and resolution methods

Where do we stand?

� How one frames the non-anticipativity constraint
impacts numerical resolution methods

� On a finite scenario space, one obtains
large (deterministic) optimization problems
either on a tree or on a comb

� Else, one resorts to state-based formulations,
with solutions as policies (dynamic programming)
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Framing stochastic optimization problems Discussing framing and resolution methods

Optimization approaches to attack complexity

Linear programming

� linear equations and
inequalities

� no curse of dimension

Stochastic programming

� no special treatment of
time and uncertainties

� no independence
assumption

� decisions are indexed by a
scenario tree

� what if information is not a
node in the tree?

State-based dynamic optimization

� nonlinear equations and inequalities

� curse of dimensionality

� independence assumption on uncertainties

� special treatment of time (dynamic
programming equation)

� decisions are indexed by an information
state (feedback synthesis)

� an information state summarizes past
controls and uncertainties

� decomposition-coordination methods to
overcome the curse of dimensionality?
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Framing stochastic optimization problems Discussing framing and resolution methods

Summary

� Stochastic optimization highlights risk attitudes tackling

� Stochastic dynamic optimization emphasizes
the handling of online information

� Many issues are raised, because

� many ways to represent risk (criterion, constraints)
� many information structures
� tremendous numerical obstacles to overcome

� Each method has its numerical wall

� in dynamic programming, the bottleneck is the dimension of the state
(no more than 3)

� in stochastic programming, the bottleneck is the number of stages
(no more than 2)
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Optimization with finite scenario space

Outline of the presentation

1 Working out classical examples

2 Framing stochastic optimization problems

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
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Optimization with finite scenario space

From linear to stochastic programming

� The linear program
min 〈c , x〉

x ≥ 0
Ax + b ≥ 0

� becomes a stochastic program

minE(〈c(ξ) , x〉)
x ≥ 0

A(ξ)x + b(ξ) ≥ 0

where ξ : Ω → Ξ is a finite random variable

� so that there are as many inequalities as there are possible values for ξ

A
(
ξ(ω)

)
x + b

(
ξ(ω)

)
≥ 0 , ∀ω ∈ Ω

and these inequality constraints may define an empty domain for optimization
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Optimization with finite scenario space

Recourse variables need be introduced for feasability issues

� We denote by ξ ∈ Ξ any possible value of the random variable ξ

� and we introduce a recourse variable y = (y(ξ), ξ ∈ Ξ) and the program

min
∑

ξ∈Ξ

P{ξ}
(

〈c(ξ) , x〉+ 〈p(ξ) , y(ξ)〉
)

x ≥ 0
y(ξ) ≥ 0 , ∀ξ ∈ Ξ

A(ξ)x + b(ξ)− y(ξ) ≥ 0 , ∀ξ ∈ Ξ

� so that the inequality A(ξ)x + b(ξ)− y(ξ) ≥ 0 is now possible,
at (unitary recourse) price vector p = (p(ξ), ξ ∈ Ξ)

� As there are as many inequalities A(ξ)x + b(ξ)− y(ξ) ≥ 0
as there are possible values for ξ,
hence stochastic programs are huge problems, but can remain linear
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Optimization with finite scenario space

Two-step stochastic programs with recourse can
become deterministic non-smooth convex problems

� Define
Q(ξ, x) = min{〈p(ξ) , y〉 ,A(ξ)x + b(ξ)− y ≥ 0}

which is a convex function of x , non-smooth

� so that the original two-step stochastic program with recourse

min
∑

ξ∈Ξ

P{ξ}〈c(ξ) , x〉+ 〈p(ξ) , y(ξ)〉

x ≥ 0
y(ξ) ≥ 0 , ∀ξ ∈ Ξ

A(ξ)x + b(ξ)− y(ξ) ≥ 0 , ∀ξ ∈ Ξ

� now becomes the deterministic non-smooth convex problem

min 〈c , x〉+
∑

ξ∈Ξ

P{ξ}Q(ξ, x)

x ≥ 0
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Optimization with finite scenario space

Roger Wets example

http://cermics.enpc.fr/~delara/ENSEIGNEMENT/

CEA-EDF-INRIA_2012/Roger_Wets1.pdf
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Optimization with finite scenario space

Solutions of multi-stage stochastic optimization problems,
without dual effect, can be indexed by a tree

✵ ✷ ✸✶
t

� Conditional probabilities given on
the arcs, probabilities on the leafs

� Solutions indexed by the nodes of
the tree
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Optimization with finite scenario space
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Solving stochastic optimization problems by decomposition methods

1 Working out classical examples

2 Framing stochastic optimization problems

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Solving stochastic optimization problems by decomposition methods Progressive Hedging

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Solving stochastic optimization problems by decomposition methods Dynamic Programming

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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During the night of 16 June 2013,
electricity prices were negative
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Outline of the talk

� In 2000, the Optimization and Systems team was created at École des Ponts
ParisTech and, since then, we have trained PhD students in stochastic
optimization, mostly with Électricité de France Research and Development

� Since 2011, we witness a growing demand from energy firms for stochastic
optimization, fueled by a deep and fast transformation of power systems

� Renewable energies penetration, telecommunication technologies and markets
remold power systems and challenge optimization

� More renewable energies → more unpredicability + more variability →

� more storage → more dynamic optimization, optimal control
� more stochastic optimization

hence, stochastic optimal control

� We shed light on the two main new issues in stochastic control

in comparison with deterministic control: risk attitudes and online information

� We cast a glow on two snapshots highlighting ongoing research in the field of
stochastic control applied to energy
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Outline of the presentation

1 Long term industry-academy cooperation

2 The remolding of power systems seen from an optimizer perspective

3 Moving from deterministic to stochastic dynamic optimization

4 Two snapshots on ongoing research

5 A need for training and research
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Long term industry-academy cooperation

Outline of the presentation

1 Long term industry-academy cooperation

2 The remolding of power systems seen from an optimizer perspective

3 Moving from deterministic to stochastic dynamic optimization

4 Two snapshots on ongoing research

5 A need for training and research
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Long term industry-academy cooperation École des Ponts ParisTech–Cermics–Optimization and Systems

Outline of the presentation

1 Long term industry-academy cooperation
École des Ponts ParisTech–Cermics–Optimization and Systems
Industry partners of the Optimization and Systems Group

2 The remolding of power systems seen from an optimizer perspective
The remolding of power systems
Optimization is challenged

3 Moving from deterministic to stochastic dynamic optimization
Working out a toy example
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

4 Two snapshots on ongoing research
Decomposition-coordination optimization methods under uncertainty
Risk constraints in optimization

5 A need for training and research
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Long term industry-academy cooperation École des Ponts ParisTech–Cermics–Optimization and Systems

École des Ponts ParisTech is
one of the world’s oldest engineering institutes

� The École nationale des ponts et chaussées was founded in 1747
and is one of the world’s oldest engineering institutes

� École des Ponts ParisTech is traditionally considered
as belonging to the 5 leading engineering schools in France

� Young graduates find positions in professional sectors like
transport and urban planning, banking, finance, consulting, civil works,
industry, environnement, energy. . .

� Faculty and staff

� 217 employees (including 50 subsidaries).
� 165 module leaders, including 68 professors.
� 1509 students.

� École des Ponts ParisTech is part of University Paris-Est
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Long term industry-academy cooperation École des Ponts ParisTech–Cermics–Optimization and Systems

École des Ponts ParisTech hosts
a substantial research activity

� Figures on research

� Research personnel: 220
� About 40 École des Ponts PhDs students graduate each year

� 10 research centers
* CEREA (atmospheric environment), joint École des Ponts-EDF R&D
* CEREVE (water, urban and environment studies)
* CERMICS (mathematics and scientific computing)
* CERTIS (information technologies and systems)
* CIRED (international environment and development)
* LATTS (techniques, regional planning and society)
* LVMT (city, mobility, transport)
* UR Navier (mechanics, materials and structures of civil engineering, geotechnic)

* Saint-Venant laboratory (fluid mechanics), joint École des Ponts-EDF R&D
* Paris School of Economic PSE
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Long term industry-academy cooperation École des Ponts ParisTech–Cermics–Optimization and Systems

The CERMICS is the Centre d’enseignement et de
recherche en mathématiques et calcul scientifique

� The scientific activity of CERMICS covers several domains in

� scientific computing
� modelling
� optimization

� 15 senior researchers

� 15 PhD
� 12 habilitation à diriger des recherches

� Three missions

� Teaching and PhD training
� Scientific publications
� Contracts

� 550 000 euros of contracts per year with

� research and development centers of large industrial firms:
CEA, CNES, EADS, EDF, Rio Tinto. . .

� public research contracts

Michel DE LARA (Cermics, France) GIMEL-CONOSER-UdeA, Medellin, 14 November 2014 November 14, 2014 9 / 125



Long term industry-academy cooperation École des Ponts ParisTech–Cermics–Optimization and Systems

The Optimization and Systems Group comprises
3 senior researchers, as well as PhD students

and external associated researchers

� Three senior researchers

� J.-P. CHANCELIER
� M. DE LARA
� F. MEUNIER

� Eight PhD students

� Four associated researchers

� P. CARPENTIER (ENSTA ParisTech)
� L. ANDRIEU (EDF R&D)
� K. BARTY (EDF R&D)
� A. DALLAGI (EDF R&D)
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Long term industry-academy cooperation École des Ponts ParisTech–Cermics–Optimization and Systems

Optimization and Systems Group research specialities

� Methods
� Stochastic optimal control (discrete-time)

Large-scale systems
Discretization and numerical methods
Probability constraints

� Discrete mathematics; combinatorial optimization
� System control theory, viability and stochastic viability
� Numerical methods for fixed points computation
� Uncertainty and learning in economics

� Applications

� Optimized management of power systems under uncertainty
(production scheduling, power grid operations, risk management)

� Transport modelling and management
� Natural resources management (fisheries, mining, epidemiology)

� Softwares

� Scicoslab, NSP
� Oadlibsim
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Long term industry-academy cooperation École des Ponts ParisTech–Cermics–Optimization and Systems

Publications since 2000

� 24 publications in peer-reviewed international journals

� 3 publications in collective works

� 4 books

� Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4
(2e édition, Springer-Verlag)

� Introduction à SCILAB
(2e édition, Springer-Verlag)

� Sustainable Management of Natural Resources. Mathematical Models and
Methods (Springer-Verlag)

� Control Theory for Engineers (Springer-Verlag)

� 1 book submitted to Springer-Verlag

� Stochastic Optimization. At the Crossroads between Stochastic Control and

Stochastic Programming
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Long term industry-academy cooperation École des Ponts ParisTech–Cermics–Optimization and Systems

Teaching

� Masters

� Master Parisien de Recherche Opérationnelle

� Optimisation & Théorie des Jeux. Modélisation en Economie

� Mathématiques, Informatique et Applications

� Économie du Développement Durable, de l’Environnement et de l’Énergie

� Renewable Energy Science and Technology Master ParisTech

� École des Ponts ParisTech

� Introduction à la recherche opérationnelle (F. MEUNIER)
� Optimisation et contrôle (J.-P. CHANCELIER)
� Modéliser l’aléa (J.-P. CHANCELIER)
� Modélisation pour la gestion durable des ressources naturelles (M. DE LARA)
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Long term industry-academy cooperation École des Ponts ParisTech–Cermics–Optimization and Systems

Industrial contracts mostly deal with energy issues,
public ones touch on biodiversity management

� Industrial contracts

� Conseil français de l’énergie (CFE)
� SETEC Energy Solutions
� Électricité de France (EDF R&D)
� Thales
� Institut français de l’énergie (IFE)
� Gaz de France (GDF)
� PSA

� Public contracts

� STIC-AmSud (CNRS-INRIA-Affaires étrangères)
� Centre d’étude des tunnels
� CNRS ACI Écologie quantitative
� RTP CNRS
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Long term industry-academy cooperation Industry partners of the Optimization and Systems Group

Outline of the presentation

1 Long term industry-academy cooperation
École des Ponts ParisTech–Cermics–Optimization and Systems
Industry partners of the Optimization and Systems Group

2 The remolding of power systems seen from an optimizer perspective
The remolding of power systems
Optimization is challenged

3 Moving from deterministic to stochastic dynamic optimization
Working out a toy example
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

4 Two snapshots on ongoing research
Decomposition-coordination optimization methods under uncertainty
Risk constraints in optimization

5 A need for training and research
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Long term industry-academy cooperation Industry partners of the Optimization and Systems Group

We cooperate with industry partners,
looking for longlasting research relations

through training and capacity building

� As academics, we cooperate with industry partners,
looking for longlasting close relations

� We are not consultants working for clients,
but focus en capacity building

� Our job consists mainly in

� training Master and PhD students, working within the company
and interacting with us, on subjects designed jointly

� developing methods, algorithms
� contributing to computer codes developed within the company
� training professional engineers in the company
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Long term industry-academy cooperation Industry partners of the Optimization and Systems Group

Électricité de France R & D / Département OSIRIS

� Électricité de France is the French electricity main producer

� 159 000 collaborateurs dans le monde
� 37 millions de clients dans le monde
� 65,2 milliards d’euros de chiffre d’affaire
� 630,4 TWh produits dans le monde

� Électricité de France Research & Development

� 486 millions d’euros de budget
� 2 000 personnes

� Département OSIRIS
Optimisation, simulation, risques et statistiques pour les marchés de l’énergie
Optimization, simulation, risks and statistics for the energy markets

� 145 salariés (dont 10 doctorants)
� 25 millions d’euros de budget
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Long term industry-academy cooperation Industry partners of the Optimization and Systems Group

What is “optimization”?

Optimizing is obtaining the best compromise between needs and resources

Marcel Boiteux (président d’honneur d’Électricité de France)

� Resources: portfolio of assets
� production units

costly/not costly: thermal/hydropower
stock/flow, predictable/unpredictable: thermal/wind

� tariffs options, contracts

� Needs: energy, safety, environment

� energy uses
� safety, quality, resilience (breakdowns, blackout)
� environment protection (pollution) and alternative uses (dam water)

� Best compromise: minimize socio-economic costs (including externalities)
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Long term industry-academy cooperation Industry partners of the Optimization and Systems Group

The Optimization and Systems Group has trained
10 PhD from 2004 to 2014, most of them

related with EDF and energy management

* Laetitia ANDRIEU, former PhD student at EDF, now researcher EDF
* Kengy BARTY, former PhD student at EDF, now researcher EDF
* Daniel CHEMLA, former PhD student
* Anes DALLAGI, former PhD student at EDF, now researcher EDF
* Laurent GILOTTE, former PhD student with IFE, researcher EDF
* Pierre GIRARDEAU, former PhD student at EDF, now with ARTELYS
* Eugénie LIORIS, former PhD student
* Babacar SECK, former PhD student at EDF
* Cyrille STRUGAREK, former PhD student at EDF, now with Munich-Ré
* Jean-Christophe ALAIS, former PhD student at EDF, now with ARTELYS
* Vincent LECLERE, former PhD student (partly at EDF), now with CERMICS
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Long term industry-academy cooperation Industry partners of the Optimization and Systems Group

PhD subjects reflect academic issues
raised by industrial problems

� Contributions to the Discretization of Measurability Constraints for Stochastic

Optimization Problems,

� Optimization under Probability Constraint,

� Uncertainty, Inertia and Optimal Decision. Optimal Control Models Applied to Greenhouse

Gas Abatment Policies Selection,

� Variational Approaches and other Contributions in Stochastic Optimization,

� Particular Methods in Stochastic Optimal Control,

� From Risk Constraints in Stochastic Optimization Problems to Utility Functions,

� Resolution of Large Size Problems in Dynamic Stochastic Optimization and Synthesis of

Control Laws,

� Evaluation and Optimization of Collective Taxis Systems,

� Risk and Optimization for Energies Management,

� Risk, Optimization, Large Systems,
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Long term industry-academy cooperation Industry partners of the Optimization and Systems Group

Recently, contacts have expanded with small companies

� ARTELYS is a company specializing in optimization, decision-making and
modeling. Relying on their high level of expertise in quantitative methods,
the consultants deliver efficient solutions to complex business problems. They
provide services to diversified industries: Energy & Environment, Logistics &
Transportation, Telecommunications, Finance and Defense.

� Créée en 2011, SETEC Energy Solutions est la filiale du groupe SETEC
spécialisée dans les domaines de la production et de la mâıtrise de l’énergie
en France et à l’étranger. SETEC Energy Solutions apporte à ses clients la
mâıtrise des principaux process énergétiques pour la mise en œuvre de
solutions innovantes depuis les phases initiales de définition d’un projet
jusqu’à son exploitation.

� SUN’R Smart Energy is a Paris based company with a focus on building
smarter solutions for distributed energy resources in the context of emerging
deregulated energy markets and a solid political will towards the development
of both renewables and energy storage. The company is part of a larger
group founded in 2007 and is a growing, well-funded early stage business.
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Long term industry-academy cooperation Industry partners of the Optimization and Systems Group

French Energy Council, member of the World Energy
Council, contracted the Optimization and Systems group

to report on Optimization methods for smart grids

� Formed in 1923, the World Energy Council (WEC) is the UN-accredited
global energy body, representing the entire energy spectrum, with more than
3000 member organisations located in over 90 countries and drawn from
governments, private and state corporations, academia, NGOs and
energy-related stakeholders

� WEC informs global, regional and national energy strategies by hosting
high-level events, publishing authoritative studies, and working through its
extensive member network to facilitate the world’s energy policy dialogue

� In 2012, the French Energy Council contracted the Optimization and Systems
group to produce a report on Optimization methods for smart grids

Michel DE LARA (Cermics, France) GIMEL-CONOSER-UdeA, Medellin, 14 November 2014 November 14, 2014 22 / 125



Long term industry-academy cooperation Industry partners of the Optimization and Systems Group

Summary

The following slides on the remolding of power systems express a viewpoint

� from an optimizer perspective

� working in an optimization research group

� in an applied mathematics research center

� in a French engineering institute

� having contributed to train students now working in energy

� having contacts and contracts with energy/environment firms
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The remolding of power systems seen from an optimizer perspective

Outline of the presentation

1 Long term industry-academy cooperation
École des Ponts ParisTech–Cermics–Optimization and Systems
Industry partners of the Optimization and Systems Group

2 The remolding of power systems seen from an optimizer perspective
The remolding of power systems
Optimization is challenged

3 Moving from deterministic to stochastic dynamic optimization
Working out a toy example
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

4 Two snapshots on ongoing research
Decomposition-coordination optimization methods under uncertainty
Risk constraints in optimization

5 A need for training and research
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The remolding of power systems seen from an optimizer perspective The remolding of power systems

Outline of the presentation
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École des Ponts ParisTech–Cermics–Optimization and Systems
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2 The remolding of power systems seen from an optimizer perspective
The remolding of power systems
Optimization is challenged

3 Moving from deterministic to stochastic dynamic optimization
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4 Two snapshots on ongoing research
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Risk constraints in optimization
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The remolding of power systems seen from an optimizer perspective The remolding of power systems

Three key drivers are remolding power systems

� Environment

� Markets

� Technology
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The remolding of power systems seen from an optimizer perspective The remolding of power systems

Key driver: environmental concern

The European Union climate and energy package
materializes an environmental concern
with three 20-20-20 objectives for 2020

� a 20% improvement
in the EU’s energy efficiency

� a 20% reduction in EU greenhouse gas
emissions from 1990 levels

� raising the share of EU energy consumption
produced from renewable resources to 20%

⇓
Successfully integrating renewable energy sources

has become critical,
and made especially difficult because they are

unpredictable and highly variable,
hence triggering the use of local storage
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The remolding of power systems seen from an optimizer perspective The remolding of power systems

Key driver: economic deregulation

� A power system (generation/transmission/distribution)

� less and less vertical (deregulation of energy markets)
� hence with many players with their own goals

� with some new players

� industry (electric vehicle)
� regional public authorities (autonomy, efficiency)

� with a network in horizontal expansion
(the Pan European electricity transmission system counts 10,000 buses,
15,000 power lines, 2,500 transformers, 3,000 generators, 5,000 loads)

� with more and more exchanges (trade of commodities)

⇓
A change of paradigm for management

from centralized to more and more decentralized
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The remolding of power systems seen from an optimizer perspective The remolding of power systems

Key driver: telecommunication technology

Linky

A power system with more and more technology
due to evolutions in the fields of metering,
computing and telecoms

� smart meters

� sensors

� controllers

� grid communication devices. . .

⇓
A huge amount of data which, one day, will be
a new potential for optimized management
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The remolding of power systems seen from an optimizer perspective The remolding of power systems

The “smart grid”? An infrastructure project with promises
to be fulfilled by a “smart power system”

� Hardware / infrastructures / smart technologies

� Renewable energies technologies
� Smart metering
� Storage

� Promises

� Quality, tariffs
� More safety
� More renewables (environmentally friendly)

� Software / smart management
(energy supply being less flexible,
make the demand more flexible)
smart management, smart operation, smart meter management, smart distributed generation, load

management, advanced distribution management systems, active demand management, diffuse

effacement, distribution management systems, storage management, smart home, demand side

management. . .
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The remolding of power systems seen from an optimizer perspective Optimization is challenged

Outline of the presentation
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The remolding of power systems seen from an optimizer perspective Optimization is challenged

We witnessed a call from EDF to optimizers

� Every three years, Électricité de France (EDF) organizes an international
Conference on Optimization and Practices in Industry (COPI)

� At the last COPI’11, Jean-François Faugeras from EDF R&D opened the
conference with a plenary talk entitled “Smart grids: a wind of change in
power systems and new opportunities for optimization”

� He claimed that “power system players are facing high level problems to solve
requiring new optimization methods and tools”,
with “not only a ’smart(er)’ grid but a ’smart(er)’ power system”
and called on the optimizers to develop new methods

� In 2012, EDF R&D has sponsored a new program Gaspard Monge pour

l’Optimisation et la recherche opérationnelle (PGMO)
to support academic research in the field of optimization
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The remolding of power systems seen from an optimizer perspective Optimization is challenged

What is “optimization”?

Optimizing is obtaining the best compromise between needs and resources

Marcel Boiteux (président d’honneur d’Électricité de France)

� Resources: portfolio of assets
� production units

costly/not costly: thermal/hydropower
stock/flow, predictable/unpredictable: thermal/wind

� tariffs options, contracts

� Needs: energy, safety, environment

� energy uses
� safety, quality, resilience (breakdowns, blackout)
� environment protection (pollution) and alternative uses (dam water)

� Best compromise: minimize socio-economic costs (including externalities)
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The remolding of power systems seen from an optimizer perspective Optimization is challenged

Electrical engineers metiers and skills are evolving

� Unit commitment, optimal dispatch of generating units:
finding the least-cost dispatch of available generation resources to meet the
electrical load

� which unit? 0/1 variables
� which power level? continuous variables

subject to more unpredictable energy flows (solar, wind)
and demand (electrical devices, cars)

� Markets: day-ahead, intra-day (balancing market):
dispatcher takes bids from the generators, demand forecasts from the
distribution companies and clears the market
subject to more unpredictability, more players

� Long term planning
subject to more unpredictability (technologies, climate), more players

� . . .Without even speaking of voltage, frequency and phase control
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The remolding of power systems seen from an optimizer perspective Optimization is challenged

Let us have a look at economic dispatch (static) as a
cost-minimization problem under supply-demand balance

Consider energy production units i = 1, . . . ,N , like coal, gas, nuclear. . .

min
(u1,...,uN)

N∑

i=1

Ji (ui )

︸ ︷︷ ︸

costs minimization

under

N∑

i=1

Θi(ui ) = D

︸ ︷︷ ︸

supply = demand

where

� ui is the decision (production level) made for each unit i

� Ji (ui ) is the cost of making decision ui for unit i

� Θi(ui ) is the production induced by making decision ui for unit i

� D is the demand
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The remolding of power systems seen from an optimizer perspective Optimization is challenged

Inviting in uncertainty gives economic dispatch
new suits of clothes

min
(u1,...,uN)

E[

N∑

i=1

Ji (ui ,

price
︷︸︸︷
pi )]

︸ ︷︷ ︸

expected costs minimization

under

N∑

i=1

Θi(ui ,

weather
︷︸︸︷
wi ) =

demand
︷︸︸︷

D

︸ ︷︷ ︸

almost-surely supply = demand

� Mathematical description of sources of uncertainties
(prices pi , weather wi , demand D, failures. . . ):
statistics? bounds?

� Mathematical formulation of the criterion under uncertainty:
in expectation (E)? worst case (max)?

� Mathematical formulation of the constraints under uncertainty:
in expectation? in probability? almost surely? robust? by penalization?
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The remolding of power systems seen from an optimizer perspective Optimization is challenged

With uncertainty come stages, hence a dynamics

� In electricity, the supply matches demand equation
“is like gravity, you cannot negociate” (who claimed that?)

� One way or another, we are driven to add a new instantaneous source uN+1

N∑

i=1

Θi (ui ,

weather
︷︸︸︷
wi ) + uN+1

︸ ︷︷ ︸

new source

=

demand
︷︸︸︷

D

� The control uN+1 = D −
∑N

i=1Θi(ui ,wi )
depends on the uncertain variables D and w1, . . . , wN

� Whereas u1, . . . , uN are decisions made before knowing their realizations

� To cut to the point, we now have two stages

⇓
Piecing things together, we started from static economic dispatch and,

on the path of making allowance for uncertainty,
we have been quite naturally led to

dynamic economic dispatch under risk
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The remolding of power systems seen from an optimizer perspective Optimization is challenged

Optimization skills will follow the power system evolution

We focus on generation and trading, not on transmission and distribution

� Less base production and more wind and photovoltaic fatal generation makes
supply more unpredictible
→ stochastic optimization

� Hence more storage (batteries, pumping stations)
→ dynamical optimization, reserves dimensioning

� The shape of the load is changing due to electric vehicle penetration
→ demand-side management, “peak shaving”, adaptive tariffs

� New subsystems emerge with local information and means of action: smart
meters, new producers, micro-grid, virtual power plant
→ agregation, coordination, decentralized optimization

� Markets (day-ahead, intra-day)
→ optimization under uncertainty

� Environmental constraints on production (CO2) and resources usages (water)
→ risk constraints
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The remolding of power systems seen from an optimizer perspective Optimization is challenged

Summary

� Three major key factors — environmental concern, deregulation,
telecommunication, metering and computing technology —
drive the power systems remolding

� This remolding induces a change of paradigm for management:
from vertical centralized predictible “stock” energies to
more horizontal decentralized unpredictible variable “flow” energies

� Specific optimization skills will be required,
because an optimal solution is balancing on a knife edge,
hence might perform poorly under off-nominal conditions,
like a too much adjusted suit cracking at the first move

Roger Wets’ illuminating example: deterministic vs. robust

of a furniture manufacturer deciding how many dressers of each of 4 types to
produce, with carpentry and finishing man-hours as constraints; when the ten
parameters become random, the stochastic optimal solution considers all ≈ 106

possibilities and provides a robust solution (257 ; 0 ; 665 ; 34), whereas the
deterministic solution (1, 333 ; 0 ; 0 ; 67) does not point in the right direction
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Moving from deterministic to stochastic dynamic optimization

Outline of the presentation

1 Long term industry-academy cooperation

2 The remolding of power systems seen from an optimizer perspective

3 Moving from deterministic to stochastic dynamic optimization

4 Two snapshots on ongoing research

5 A need for training and research
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Moving from deterministic to stochastic dynamic optimization

We distinguish two polar classes of models:
knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1 maps

Office of Oceanic and Atmospheric
Research (OAR) climate model
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Moving from deterministic to stochastic dynamic optimization

We distinguish two polar classes of models:
knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1 maps

Office of Oceanic and Atmospheric
Research (OAR) climate model

Action/decision models:
economic models are fables
designed to provide insight

William Nordhaus
economic-climate model
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

Outline of the presentation

1 Long term industry-academy cooperation
École des Ponts ParisTech–Cermics–Optimization and Systems
Industry partners of the Optimization and Systems Group

2 The remolding of power systems seen from an optimizer perspective
The remolding of power systems
Optimization is challenged

3 Moving from deterministic to stochastic dynamic optimization
Working out a toy example
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

4 Two snapshots on ongoing research
Decomposition-coordination optimization methods under uncertainty
Risk constraints in optimization

5 A need for training and research
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

Let us work out a toy example of economic dispatch as a
cost-minimization problem under supply-demand balance

� Production: consider two energy production units

� a “cheap” limited one with which we can produce
quantity q0, with 0 ≤ q0 ≤ q

♯
0, at cost c0q0

� an “expensive” unlimited one with which we can produce
quantity q1, with 0 ≤ q1, at cost c1q1, with c1 > c0

� Consumption: the demand is D ≥ 0

� Balance: ensuring at least the demand

D ≤ q0 + q1

� Optimization: total costs minimization

min
q0,q1

c0q0 + c1q1
︸ ︷︷ ︸

total costs
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

When the demand D is deterministic,
the optimization problem is well posed

� The deterministic demand D is a single number, and we consider

min
q0,q1

c0q0 + c1q1

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1

� The solution is q⋆0 = min{q♯0,D} , q⋆1 = [D − q
♯
0]+, that is,

� if the demand D is below the capacity q
♯
0 of the “cheap” energy source

D ≤ q
♯
0 ⇒ q

⋆
0 = D , q

⋆
1 = 0

� if the demand D is above the capacity q
♯
0 of the “cheap” energy source,

D > q
♯
0 ⇒ q

⋆
0 = q

♯
0 , q

⋆
1 = D − q

♯
0

� Now, what happens when the demand D is no longer deterministic?
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

If we know the demand beforehand,
the optimization problem is deterministic

� We suppose that the demand is a random variable D : Ω → R+

� If we solve the problem for each possible value D(ω) of the random
variable D, when ω ∈ Ω, we obtain

q0(ω) = min{q♯0,D(ω)} , q1(ω) = [D(ω)− q
♯
0]+

and we face an informational issue

� Indeed, we treat the demand D as if observed before making the decisions
q0 and q1

� When the demand D is not observed, how can we do?
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

What happens if we replace the uncertain value D of

the demand by its mean D in the deterministic solution?

� If we suppose that the demand D is a random variable D : Ω → R+,
with mathematical expectation E(D) = D

� and that we propose the “deterministic solution”

q
(D)
0 = min{q♯0,D} , q

(D)
1 = [D − q

♯
0]+

� we cannot assure the inequality

D(ω)
︸ ︷︷ ︸

uncertain

≤ q0 + q1
︸ ︷︷ ︸

deterministic

, ∀ω ∈ Ω

because supω∈ΩD(ω) > D = q
(D)
0 + q

(D)
1

� Are there better solutions among the deterministic ones?
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

When the demand D is bounded above,
the robust optimization problem has a solution

� In the robust optimization problem, we minimize

min
q0,q1

c0q0 + c1q1

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D(ω) ≤ q0 + q1 , ∀ω ∈ Ω

� When D♯ = supω∈Ω D(ω) < +∞, the solution is

q⋆0 = min{q♯0,D
♯} , q⋆1 = [D♯ − q

♯
0]+

� Now, the total cost c0q
⋆
0 + c1q

⋆
1 is an increasing function

of the upper bound D♯ of the demand

� Is it not too costly to optimize under the worst-case situation?
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

Where do we stand?

� When the demand D is deterministic, the optimization problem is well posed

� If we know the demand beforehand, the optimization problem is deterministic

� If we replace the uncertain value D of the demand by its mean D

in the deterministic solution, we remain with a feasability issue

� When the demand D is bounded above, the robust optimization problem has
a solution, but it is costly
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

Where do we stand?

� When the demand D is deterministic, the optimization problem is well posed

� If we know the demand beforehand, the optimization problem is deterministic

� If we replace the uncertain value D of the demand by its mean D

in the deterministic solution, we remain with a feasability issue

� When the demand D is bounded above, the robust optimization problem has
a solution, but it is costly

To overcome the above difficulties, we propose to introduce stages

D(ω)
︸ ︷︷ ︸

uncertain

≤ q0
︸︷︷︸

deterministic

+ q1(ω)
︸ ︷︷ ︸

uncertain

, ∀ω ∈ Ω

� the decision q0 is made before observing the demand D(ω)

� the decision q1(ω) is made after observing the demand D(ω)
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

To overcome the above difficulties,
we turn to stochastic optimization

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1
q1 depends upon D

and we emphasize two issues, new with respect to the deterministic case

� expliciting online information issue:
the decision q1 depends upon the random variable D

� expliciting risk attitudes:
we aggregate the total costs with respect to all possible values
by taking the expectation E[c0q0 + c1q1]
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

Turning to stochastic optimization
forces one to specify online information

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1
q1 depends upon D

� specifying that the decision q1 depends upon the random variable D,
whereas q0 does not, forces to consider two stages
and a so-called non-anticipativity constraint (more on that later)

� first stage: q0 does not depend upon the random variable D

� second stage: q1 depends upon the random variable D
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

Turning to stochastic optimization
forces one to specify risk attitudes

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1
q1 depends upon D

� Now that q1 depends upon the random variable D,
it is also a random variable, and so is the total cost c0q0 + c1q1;
therefore, we have to aggregate the total costs with respect to all possible
values, and we chose to do it by taking the expectation E[c0q0 + c1q1]
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Moving from deterministic to stochastic dynamic optimization Working out a toy example

In the uncertain framework,
two additional questions must be answered

with respect to the deterministic case

Question (expliciting risk attitudes)

How are the uncertainties taken into account
in the payoff criterion and in the constraints?

Question (expliciting available online information)

Upon which online information are decisions made?
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

Outline of the presentation

1 Long term industry-academy cooperation
École des Ponts ParisTech–Cermics–Optimization and Systems
Industry partners of the Optimization and Systems Group

2 The remolding of power systems seen from an optimizer perspective
The remolding of power systems
Optimization is challenged

3 Moving from deterministic to stochastic dynamic optimization
Working out a toy example
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

4 Two snapshots on ongoing research
Decomposition-coordination optimization methods under uncertainty
Risk constraints in optimization

5 A need for training and research
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

The output of a stochastic optimization problem
is a random variable. How can we rank random variables?
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

How are the uncertainties taken into account
in the payoff criterion and in the constraints?

In a probabilistic setting, where uncertainties are random variables,
a classical answer is

� to take the mathematical expectation of the payoff (risk-neutral approach)

E(payoff)

� and to satisfy all (physical) constrainsts almost surely that is, practically,
for all possible issues of the uncertainties (robust approach)

P(constrainsts) = 1

But there are many other ways to handle risk: robust, worst case, risk measures,
in probability, almost surely, by penalization, etc.
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

A policy and a criterion yield a real-valued payoff

Given a policy Pol ∈ U
ad and a scenario w(·) ∈ Ω, we obtain a payoff

Payoff
(
Pol,w(·)

)

hence a mapping U
ad × Ω → R

Policies/Scenarios wA(·) ∈ Ω wB(·) ∈ Ω . . .

Pol1 ∈ U
ad Payoff

(
Pol1,w

A(·)
)

Payoff
(
Pol1,w

B(·)
)

. . .

Pol2 ∈ U
ad Payoff

(
Pol2,w

A(·)
)

Payoff
(
Pol2,w

B(·)
)

. . .
. . . . . . . . . . . .
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

In the robust or pessimistic approach,
Nature is supposed to be malevolent,

and the DM aims at protection against all odds
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

In the robust or pessimistic approach,
Nature is supposed to be malevolent

� In the robust approach, the DM considers the worst payoff

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)

︸ ︷︷ ︸

worst payoff

� Nature is supposed to be malevolent,
and specifically selects the worst scenario:
the DM plays after Nature has played, and maximizes the worst payoff

max
Pol∈Uad

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)

� Robust, pessimistic, worst-case, maximin, minimax (for costs)

Guaranteed energy production

In a dam, the minimal energy production in a given period, corresponding to the
worst water inflow scenario
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

The robust approach can be softened
with plausibility weighting

� Let Θ : Ω → R ∪ {−∞} be a a plausibility function.

� The higher, the more plausible:
totally implausible scenarios are those for which Θ

(
w(·)

)
= −∞

� Nature is malevolent, and specifically selects the worst scenario,
but weighs it according to the plausibility function Θ

� The DM plays after Nature has played, and solves

max
Pol∈Uad




 min
w(·)∈Ω




Payoff

(
Pol,w(·)

)
− Θ

(
w(·)

)

︸ ︷︷ ︸

plausibility
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

In the optimistic approach,
Nature is supposed to benevolent

Future. That period of time in which our affairs prosper,

our friends are true and our happiness is assured.

Ambrose Bierce

� Instead of maximizing the worst payoff as in a robust approach,
the optimistic focuses on the most favorable payoff

max
w(·)∈Ω

Payoff
(
Pol,w(·)

)

︸ ︷︷ ︸

best payoff

� Nature is supposed to benevolent, and specifically selects the best scenario:
the DM plays after Nature has played, and solves

max
Pol∈Uad

max
w(·)∈Ω

Payoff
(
Pol,w(·)

)
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

The Hurwicz criterion reflects an intermediate attitude
between optimistic and pessimistic approaches

A proportion α ∈ [0, 1] graduates the level of prudence

max
Pol∈Uad

{

α

pessimistic
︷ ︸︸ ︷

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)
+(1− α) max

w(·)∈Ω
Payoff

(
Pol,w(·)

)

︸ ︷︷ ︸

optimistic

}
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

In the stochastic or expected approach,
Nature is supposed to play stochastically
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

In the stochastic or expected approach,
Nature is supposed to play stochastically

� The expected payoff is

mean payoff
︷ ︸︸ ︷

E

[

Payoff
(
Pol,w(·)

)
]

=
∑

w(·)∈Ω

P{w(·)}Payoff
(
Pol,w(·)

)

� Nature is supposed to play stochastically, according to distribution P:
the DM plays after Nature has played, and solves

max
Pol∈Uad

E

[

Payoff
(
Pol,w(·)

)
]

� The discounted expected utility is the special case

E

[+∞∑

t=t0

δt−t0L
(
x(t), u(t),w(t)

)
]
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

The expected utility approach distorts payoffs
before taking the expectation

� We consider a utility function L to assess the utility of the payoffs
(for instance a CARA exponential utility function)

� The expected utility is

E

[

L

(

Payoff
(
Pol,w(·)

)
)]

︸ ︷︷ ︸

expected utility

=
∑

w(·)∈Ω

P{w(·)}L

(

Payoff
(
Pol,w(·)

)
)

� The expected utility maximizer solves

max
Pol∈Uad

E

[

L

(

Payoff
(
Pol,w(·)

)
)]
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

The ambiguity or multi-prior approach
combines robust and expected criterion

� Different probabilities P, termed as beliefs or priors
and belonging to a set P of admissible probabilities on Ω

� The multi-prior approach combines robust and expected criterion
by taking the worst beliefs in terms of expected payoff

max
Pol∈Uad

min
P∈P

mean payoff
︷ ︸︸ ︷

E
P

[

Payoff
(
Pol,w(·)

)
]

︸ ︷︷ ︸

pessimistic over probabilities
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

Convex risk measures cover a wide range of risk criteria

� Different probabilities P, termed as beliefs or priors
and belonging to a set P of admissible probabilities on Ω

� To each probability P is attached a plausibility Θ(P)

max
Pol∈Uad

min
P∈P

mean payoff
︷ ︸︸ ︷

E
P

[

Payoff
(
Pol,w(·)

)
]

−

plausibility
︷ ︸︸ ︷

Θ(P)

︸ ︷︷ ︸

pessimistic over probabilities
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

Non convex risk measures can lead to non diversification

How to gamble if you must,
L.E. Dubbins and L.J. Savage,
1965

Imagine yourself at a casino with

$1,000. For some reason, you

desperately need $10,000 by morning;

anything less is worth nothing for your

purpose.

The only thing possible is to gamble

away your last cent, if need be, in an

attempt to reach the target sum of

$10,000.

� The question is how to play, not whether.
What ought you do? How should you play?

� Diversify, by playing 1 $ at a time?
� Play boldly and concentrate,

by playing 10,000 $ only one time?

� What is your decision criterion?
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Moving from deterministic to stochastic dynamic optimization Expliciting risk attitudes

Savage’s minimal regret criterion... “Had I known”

min
Pol∈Uad

{

worst regret
︷ ︸︸ ︷

max
w(·)∈Ω

[

max
anticipative policies Pol

Payoff
(
Pol,w(·)

)
− Payoff

(
Pol,w(·)

)

︸ ︷︷ ︸

regret

]}

� If the DM knows the future in advance, she solves
maxanticipative policies Pol

Payoff
(
Pol,w(·)

)
, for each scenario w(·) ∈ Ω

� The regret attached to a non-anticipative policy Pol ∈ U
ad

is the loss due to not being visionary

� The best a non-visionary DM can do with respect to regret is minimizing it

Michel DE LARA (Cermics, France) GIMEL-CONOSER-UdeA, Medellin, 14 November 2014 November 14, 2014 68 / 125



Moving from deterministic to stochastic dynamic optimization Handling online information

Outline of the presentation

1 Long term industry-academy cooperation
École des Ponts ParisTech–Cermics–Optimization and Systems
Industry partners of the Optimization and Systems Group

2 The remolding of power systems seen from an optimizer perspective
The remolding of power systems
Optimization is challenged

3 Moving from deterministic to stochastic dynamic optimization
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Moving from deterministic to stochastic dynamic optimization Handling online information

Upon which online information
are decisions made?

We navigate between two stumbling blocks: rigidity and wizardry

� On the one hand, it is suboptimal to restrict oneself,
as in the deterministic case,
to open-loop controls depending only upon time, thereby
ignoring the available information at the moment of making a decision

� On the other hand, it is impossible to suppose that we know in advance
what will happen for all times:
clairvoyance is impossible as well as look-ahead solutions

The in-between is non-anticipativity constraint
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Moving from deterministic to stochastic dynamic optimization Handling online information

There are two ways to express
the non-anticipativity constraint

Denote the uncertainties at time t by w(t), and the control by u(t)

� Functional approach
The control u(t) may be looked after under the form

u(t) = φt
(
w(t0), . . . ,w(t−1)
︸ ︷︷ ︸

past

)

where φt is a function, called policy, strategy or decision rule

� Algebraic approach
When uncertainties are considered as random variables (measurable
mappings), the above formula for u(t) expresses the measurability of the
control variable u(t) with respect to the past uncertainties, also written as

σ(u(t)) ⊂ σ
(
w(t0), . . . ,w(t−1)
︸ ︷︷ ︸

past

)
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Moving from deterministic to stochastic dynamic optimization Handling online information

What is a solution at time t?

� In deterministic control, the solution u(t) at time t is a single number

� In stochastic control, the solution u(t) at time t is a random variable
expressed

� either as u(t) = φt

(
w(t0), . . . ,w(t−1)

)
, where φt : W

t−t0 → R

� or as u(t) : Ω → R with measurability constraint
σ(u(t)) ⊂ σ

(
w(t0), . . . ,w(t−1)

)

� Now, as time t goes on, the domain of the function φt expands,
and so do the conditions σ(u(t)) ⊂ σ

(
w(t0), . . . ,w(t−1)

)

� Therefore, for numerical reasons,
the information

(
w(t0), . . . ,w(t−1)

)
has to be compressed or approximated
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Moving from deterministic to stochastic dynamic optimization Handling online information

Scenarios can be organized like a tree

t�✁ t�✂ t�✄ t�☎ t�✆ t�✁ t�✂ t�✄ t�☎ t�✆

◆ ✝✞✟✠✡☛☞✌✝ ❙✞✟✠✡☛☞✌✝ ✍☛✟✟
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Moving from deterministic to stochastic dynamic optimization Handling online information

There are two classical ways to compress information

� State-based functional approach

In the special case of the Markovian framework with
(
w(t0), . . . ,w(T )

)

white noise, there is no loss of optimality to look for solutions as

u(t) = ψt

(
x(t)

)

︸ ︷︷ ︸

state

where x(t) ∈ X
︸ ︷︷ ︸

fixed space

, x(t + 1) = Ft(x(t), u(t),w(t))
︸ ︷︷ ︸

dynamical equation

� Scenario-based measurability approach

� Scenarios are approximated by a finite family
(
w s(t0), . . . ,w

s(T )
)
, s ∈ S

� Solutions us(t) are indexed by s ∈ S with the constraint that if two scenarios
coincide up to time t, so must do the controls at time t

(
w

s(t0), . . . ,w
s′(t − 1)

)
=

(
w

s′(t0), . . . ,w
s′(t − 1)

)
⇒ u

s(t) = u
s′(t)

� In the case of the scenario tree approach,
the scenarios

(
w s(t0), . . . ,w

s(T )
)
, s ∈ S , are organized in a tree,

and controls un(t) are indexed by nodes n on the tree
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Moving from deterministic to stochastic dynamic optimization Handling online information

More on what is a solution at time t

State-based approach u(t) = ψt(x(t))

� The mapping ψt can be computed in advance (that is, at initial time t0)
and evaluated at time t on the available online information at that time t

� either exactly (for example, by dynamic programming)
� or approximately (for example, among linear decision rules) because the

computational burden of finding any function is heavy

� The value u(t) = ψt(x(t)) can be computed at time t

� either exactly by solving a proper optimization problem,
which raises issues of dynamic consistency

� or approximately
(for example, by assuming that controls from time t on are open-loop)
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Moving from deterministic to stochastic dynamic optimization Handling online information

More on what is a solution at time t

Scenario-based approach

� An optimal “solution” can be computed scenario by scenario,
with the problem that we obtain solutions such that

(
w s(t0), . . . ,w

s(t − 1)
)
=

(
w s′(t0), . . . ,w

s′(t − 1)
)
and us(t) 6= us

′

(t)

� Optimal solutions can be computed scenario by scenario and then merged
(for example, by Progressive Hedging) to be forced to satisfy

(
w s(t0), . . . ,w

s(t − 1)
)
=

(
w s′(t0), . . . ,w

s′(t − 1)
)
⇒ us(t) = us

′

(t)

� The value u(t) can be computed at time t depending on
(
w s(t0), . . . ,w

s(t − 1)
)

� either exactly by solving a proper optimization problem,
which raises issues of dynamic consistency

� or approximately (for example, by a sequence of two-stages problems)
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Moving from deterministic to stochastic dynamic optimization Discussing framing and resolution methods
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Moving from deterministic to stochastic dynamic optimization Discussing framing and resolution methods

Where do we stand?

� How one frames the non-anticipativity constraint
impacts numerical resolution methods

� On a finite scenario space, one obtains
large (deterministic) optimization problems on a tree

� Or large (deterministic) optimization problems indexed by scenarios

� Else, you resort to state-based formulations, with solutions as policies
(dynamic programming)
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Moving from deterministic to stochastic dynamic optimization Discussing framing and resolution methods

Optimization approaches to attack complexity

Linear programming

� linear equations and
inequalities

� no curse of dimension

Stochastic programming

� no special treatment of
time and uncertainties

� no independence
assumption

� decisions are indexed by a
scenario tree

� what if information is not a
node in the tree?

State-based dynamic optimization

� nonlinear equations and inequalities

� curse of dimensionality

� independence assumption on uncertainties

� special treatment of time (dynamic
programming equation)

� decisions are indexed by an information
state (feedback synthesis)

� an information state summarizes past
controls and uncertainties

� decomposition-coordination methods to
overcome the curse of dimensionality?
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Moving from deterministic to stochastic dynamic optimization Discussing framing and resolution methods

Summary

� Stochastic optimization highlights risk attitudes tackling

� Stochastic dynamic optimization emphasizes
the handling of online information

� Many issues are raised, because

� many ways to represent risk (criterion, constraints)
� many information structures
� tremendous numerical obstacles to overcome

� Each method has its numerical wall

� in dynamic programming, the bottleneck is the dimension of the state
(no more than 3)

� in stochastic programming, the bottleneck is the number of stages
(no more than 2)
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Two snapshots on ongoing research
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Decomposition-coordination: divide and conquer

� Spatial decomposition

� multiple players with their local information
� local / regional / national /supranational

� Temporal decomposition

� A state is an information summary
� Time coordination realized through Dynamic Programming, by value functions
� Hard nonanticipativity constraints

� Scenario decomposition

� Along each scenario, sub-problems are deterministic (powerful algorithms)
� Scenario coordination realized through Progressive Hedging,

by updating nonanticipativity multipliers
� Soft nonanticipativity constraints
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Coupling constraints: an overview

space

time

uncertainty

min
x, u

S∑

s=1

N∑

i=1

T∑

t=0

πsLi ,t
(
xi ,t , ui ,t , wt

)

s.t. xi ,t+1 = fi ,t(xi ,t, ui ,t ,wt)

σ(ui ,t) ⊂ σ(w0, . . . ,wt)
N
∑

i=1

θi ,t(xi ,t, ui ,t, wt) = 0

[Stochastic Pontryagin]
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Coupling constraints: time coupling

space

time

uncertainty

min
x, u

S∑

s=1

N∑

i=1

T∑

t=0

Li ,t
(
xi ,t, ui ,t, wt

)

s.t. xi ,t+1 = fi ,t(xi ,t, ui ,t ,wt)

σ(ui ,t) ⊂ σ(w0, . . . ,wt)
N
∑

i=1

θi ,t(xi ,t , ui ,t, wt) = 0

[Stochastic Pontryagin]
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Coupling constraints: scenario coupling

space

time

uncertainty

min
x, u

S∑

s=1

N∑

i=1

T∑

t=0

Li ,t
(
xi ,t, ui ,t, wt

)

s.t. xi ,t+1 = fi ,t(xi ,t, ui ,t ,wt)

σ(ui ,t) ⊂ σ(w0, . . . ,wt)
N
∑

i=1

θi ,t(xi ,t , ui ,t, wt) = 0

[Stochastic Pontryagin]
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Coupling constraints: space coupling

space

time

uncertainty

min
x, u

S∑

s=1

N∑

i=1

T∑

t=0

Li ,t
(
xi ,t, ui ,t, wt

)

s.t. xi ,t+1 = fi ,t(xi ,t, ui ,t ,wt)

σ(ui ,t) ⊂ σ(w0, . . . ,wt)
N
∑

i=1

θi ,t(xi ,t , ui ,t, wt) = 0

[Stochastic Pontryagin]
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Decomposition/coordination methods:
an overview

Main idea

1 decompose a large scale problem into smaller subproblems we are able to
solve by efficient algorithms

2 coordinate the subproblems for the concatenation of their solutions to form
the initial problem solution

How to decompose the problem by duality?

1 identify the coupling dimensions of the problem:
time, uncertainty, space

2 dualize the coupling constraints by introducing multiplyers

3 split the problem into the resulting subproblems and coordinate them by
means of the multiplyer

In the case of time decomposition, we can use the time arrow to chain static
subproblems by the dynamics equation (without dualizing)
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Decomposition/coordination methods:
an overview

space

time

uncertainty

min
x, u

E

( N∑

i=1

T∑

t=0

Li ,t
(
xi ,t, ui ,t, wt

)
)

s.t. xi ,t+1 = fi ,t(xi ,t, ui ,t ,wt)

ui ,t = E(ui ,t | w0, . . . ,wt)
N
∑

i=1

θi ,t(xi ,t , ui ,t, wt) = 0

[Stochastic Pontryagin]
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Decomposition/coordination methods:
time coupling

space

time

uncertainty

min
x, u

E

( N∑

i=1

T∑

t=0

Li ,t
(
xi ,t, ui ,t, wt

)
)

s.t. xi ,t+1 = fi ,t(xi ,t, ui ,t ,wt)

ui ,t = E(ui ,t | w0, . . . ,wt)
N
∑

i=1

θi ,t(xi ,t , ui ,t, wt) = 0

[Stochastic Pontryagin]
[Dynamic Programming]
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Decomposition/coordination methods:
scenario coupling

space

time

uncertainty

min
x, u

E

( N∑

i=1

T∑

t=0

Li ,t
(
xi ,t, ui ,t, wt

)
)

s.t. xi ,t+1 = fi ,t(xi ,t, ui ,t ,wt)

ui ,t = E(ui ,t | w0, . . . ,wt)
N
∑

i=1

θi ,t(xi ,t , ui ,t, wt) = 0

[Progressive Hedging]

Rockafellar, R.T., Wets R. J-B.
Scenario and policy aggregation in

optimization under uncertainty,
Mathematics of Operations Research,
16, pp. 119-147, 1991
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Decomposition/coordination methods:
space coupling

space

time

uncertainty

min
x, u

E

( N∑

i=1

T∑

t=0

Li ,t
(
xi ,t, ui ,t, wt

)
)

s.t. xi ,t+1 = fi ,t(xi ,t, ui ,t ,wt)

σ(ui ,t) ⊂ σ(w0, . . . ,wt)
N
∑

i=1

θi ,t(xi ,t , ui ,t, wt) = 0

[Our purpose now]
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

We have a nice decomposed problem but. . .
Flower structure

We are almost in the case where

units could be driven independently

one from another
Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

Unit 6

Unit 7

Unit 8
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

We have a nice decomposed problem but. . .
Flower structure

Unfortunately...
Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

Unit 6

Unit 7

Unit 8

Coupling
constraint
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

The associated optimization problem can be written as

min
(u1,...,uN)

N∑

i=1

Ji (ui )

︸ ︷︷ ︸

costs minimization

under

N∑

i=1

Θi(ui ) = D

︸ ︷︷ ︸

supply = demand

where

� ui is the decision of each unit i

� Ji (ui ) is the cost of making decision ui for unit i

� Θi(ui ) is the production induced by making decision ui for unit i
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Under appropriate duality assumptions,
the associated optimization problem

can be written without constraints

� For a proper Lagrange multiplier λ

min
(u1,...,uN)

N∑

i=1

Ji (ui ) + λ
(

N∑

i=1

Θi (ui)− D
)

︸ ︷︷ ︸

constraint

� We distribute the coupling constraint to each unit i

min
(u1,...,uN)

(
N∑

i=1

Ji(ui ) + λΘi (ui)
)
− λD

� The problems splits into N optimization problems

min
ui

(
Ji(ui ) + λΘi (ui)

)
, ∀i = 1, . . . ,N
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Proper prices allow decentralization of the optimum

min
(u1,...,uN)

N∑

i=1

Ji (ui ) under
N∑

i=1

Θi(ui ) = D

The simplest decomposition/coordination scheme consists in

� buying the production of each unit at a price λ(k) at iteration k

� and letting each unit minimize its modified costs

min
ui

Ji (ui ) + λ(k)
︸︷︷︸

price

Θi(ui )

� then, updating the price depending on the coupling constraint

λ(k+1) = λ(k) + ρ
( N∑

i=1

Θi(ui )− D
)

(like in the “tâtonnement de Walras” in Economics)
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

What are the stakes if we extend
spatial coupling constraint decomposition

to the dynamical and stochastic setting?

� Allowing for time and uncertainties, we classically consider the criterion

min
{ui,t}

t∈{0,T−1}

i∈{1,N}

E

( N∑

i=1

( T−1∑

t=0

Li ,t
(
xi ,t, ui ,t,wi ,t

)
+ Ki

(
xi ,T

))
)

� under the constraints

N∑

i=1

Θi ,t

(
xi ,t, ui ,t ,wi ,t

)
− dt = 0, t ∈ J0,T−1K

xi ,t+1 = fi ,t
(
xi ,t , ui ,t,wi ,t

)
, i ∈ J1,NK, t ∈ J0,T−1K
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

To avoid finding “magical solutions”,
only implementable by a wizard knowing the future,

we need to specify information constraints

� The optimization problem is not well posed, because we have not specified
upon what depends the control ui ,t of each unit i at each time t

� In the causal and perfect memory case,
we express that the control ui ,t depends of all past noises up to time t

� either by a functional approach

ui,t = φi,t

(
w1,0, . . . ,wN,0, d0 . . . . . .w1,t , . . . ,wN,t , dt

)

� or by an algebraic approach

σ(ui,t) ⊂ σ
(
w1,0, . . . ,wN,0, d0 . . . . . .w1,t , . . . ,wN,t , dt

)

Michel DE LARA (Cermics, France) GIMEL-CONOSER-UdeA, Medellin, 14 November 2014 November 14, 2014 98 / 125



Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Looking after decentralizing prices models

� Going on with the previous scheme, each unit i solves

min
ui,0,...,ui,T−1

E

( T−1∑

t=0

(

Li,t

(
xi,t , ui,t ,wi,t

)
+ λ

(k)
i,t

︸︷︷︸

price

Θi,t

(
xi,t , ui,t ,wi,t

))

+ Ki

(
xi,T

)
)

xi ,t+1 = fi ,t
(
xi ,t, ui ,t,wi ,t

)
, t ∈ J0,T−1K

� The optimal controls u⋆
i ,t of this problem depend

� upon the local state xi,t

� and . . . upon all past prices (λ
(k)
i,0 , . . . , λ

(k)
i,t ) !

� Research axis: find an approximate dynamical model for the price process,

driven by proper information; for instance, replace λ
(k)
i ,t by E

(

λ
(k)
i ,t | yt

)

,

where the information variable yt is a Markov process (short time memory)
→ “demand response”, “adaptive tariffs”,
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Dual Approximate Dynamic Programming

λk

Samples/scenarios of

dual variable

at iteration k
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Dual Approximate Dynamic Programming

λk

Samples/scenarios of

dual variable

at iteration k

Subproblem iSubproblem 1 Subproblem N

We solve subproblems

using E(λk |y)

by Dynamic Programming
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Dual Approximate Dynamic Programming

λk

Samples/scenarios of

dual variable

at iteration k

Subproblem iSubproblem 1 Subproblem N

We solve subproblems

using E(λk |y)

by Dynamic Programming

Policy Φ1
(

x1, y
)

Policy Φi
(

xi , y
)

Policy ΦN
(

xN , y
)

We obtain policies
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Dual Approximate Dynamic Programming

λk

Samples/scenarios of

dual variable

at iteration k

Subproblem iSubproblem 1 Subproblem N

We solve subproblems

using E(λk |y)

by Dynamic Programming

Policy Φ1
(

x1, y
)

Policy Φi
(

xi , y
)

Policy ΦN
(

xN , y
)

We obtain policies

We simulate scenarios of strategies and prices and

update prices using a gradient step

λk+1
t = λk

t + ρ ×
∑N

i=1 g it

(

x
i,k
t , u

i,k
t , wt

)

We update prices

using a gradient step
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Dual Approximate Dynamic Programming

λkAt iteration k + 1

Subproblem iSubproblem 1 Subproblem N

We solve subproblems

using E(λk |y)

by Dynamic Programming

Policy Φ1
(

x1, y
)

Policy Φi
(

xi , y
)

Policy ΦN
(

xN , y
)

We obtain policies

We simulate scenarios of strategies and prices and

update prices using a gradient step

λk+1
t = λk

t + ρ ×
∑N

i=1 g it

(

x
i,k
t , u

i,k
t , wt

)

We update prices

using a gradient step
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Extension to interconnected dams
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Two snapshots on ongoing research Decomposition-coordination optimization methods under uncertainty

Contribution to dynamic tariffs

� Spatial decomposition of a dynamic stochastic optimization problem

� Lagrange multipliers attached to spatial coupling constraints
are stochastic processes (prices)

� By projecting these prices, one expects to identify
approximate dynamic models

� Such prices dynamic models are interpreted as dynamic tariffs
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Two snapshots on ongoing research Risk constraints in optimization

Outline of the presentation

1 Long term industry-academy cooperation
École des Ponts ParisTech–Cermics–Optimization and Systems
Industry partners of the Optimization and Systems Group

2 The remolding of power systems seen from an optimizer perspective
The remolding of power systems
Optimization is challenged

3 Moving from deterministic to stochastic dynamic optimization
Working out a toy example
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

4 Two snapshots on ongoing research
Decomposition-coordination optimization methods under uncertainty
Risk constraints in optimization

5 A need for training and research
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Two snapshots on ongoing research Risk constraints in optimization

Tourism issues impose constraints upon traditional
economic management of a hydro-electric dam

� Maximizing the revenue
from turbinated water

� under a tourism constraint
of having enough water
in July and August
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Two snapshots on ongoing research Risk constraints in optimization

We consider a single dam nonlinear dynamical model
in the decision-hazard setting

We model the dynamics of the water volume in a dam by

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

}

� S(t) volume (stock) of water at the beginning of period [t, t + 1[

� q(t) turbined outflow volume during [t, t + 1[

� decided at the beginning of period [t, t + 1[
� chosen such that 0 ≤ q(t) ≤ min{S(t),q♯}

� a(t) inflow water volume (rain, etc.) during [t, t + 1[,
which materializes at the end t + 1 of period [t, t + 1[

� S♯ dam capacity

The setting is called decision-hazard because
the decision q(t) is made before the hazard a(t)
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Two snapshots on ongoing research Risk constraints in optimization

The red stock trajectories fail to meet
the tourism constraint in July and August
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Two snapshots on ongoing research Risk constraints in optimization

In the risk-neutral economic approach,
an optimal management maximizes the expected payoff

� Suppose that

� turbined water q(t) is sold at price p(t),
related to the price at which energy can be sold at time t

� a probability P is given on the set Ω = R
T−t0 × R

T−t0

of water inflows scenarios
(
a(t0), . . . , a(T − 1)

)

and prices scenarios
(
p(t0), . . . , p(T − 1)

)

� at the horizon, the final volume S(T ) has a value K
(
S(T )

)
,

the “final value of water”

� The traditional (risk-neutral) economic problem is to maximize the
intertemporal payoff (without discounting if the horizon is short)

maxE






T−1∑

t=t0






price
︷︸︸︷

p(t)

turbined
︷︸︸︷

q(t) −ǫq(t)2
︸ ︷︷ ︸

turbined costs




+

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)
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Two snapshots on ongoing research Risk constraints in optimization

We now have a stochastic optimization problem,
where the tourism constraint still needs

to be dressed in formal clothes

� Traditional cost minimization/payoff maximization

maxE






T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) − ǫq(t)2 +

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)






� Tourism constraint

volume S(t) ≥ S♭ , ∀t ∈ T = { July, August }

� In what sense should we consider this inequality
which involves the random variables S(t) for t ∈ T ?
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Two snapshots on ongoing research Risk constraints in optimization

Robust / almost sure / probability constraint

� Robust constraints: for all the scenarios in a subset Ω ⊂ Ω

S(t) ≥ S♭ , ∀t ∈ T

� Almost sure constraints

Probability
{

S(t) ≥ S♭ , ∀t ∈ T
}

= 1

� Probability constraints, with “confidence” level p ∈ [0, 1]

Probability
{

S(t) ≥ S♭ , ∀t ∈ T
}

≥ p

� and also by penalization, or in the mean, etc.
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Two snapshots on ongoing research Risk constraints in optimization

Our problem may be clothed as a stochastic optimization
problem under a probability constraint

P(T ) =

T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) − ǫq(t)2 +

final volume utility
︷ ︸︸ ︷

K
(
S(T )

)

� The traditional economic problem is maxE [P(T )]

� and a failure tolerance is accepted

Probability
{

S(t) ≥ S♭ , ∀t ∈ T
}

≥ 90%

� Details concerning the theoretical and numerical resolution
are available on demand ;-)
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Two snapshots on ongoing research Risk constraints in optimization

Details concerning the theoretical and numerical resolution
are available on demand ;-)

� π(0) = 1 and π(t + 1) =
{
1{S(t+1)≥S♭} × π(t) if t ∈ T

π(t) else

� P
[
S(τ) ≥ S♭ , ∀τ ∈ T

]

= E

[

1{S(τ )≥S♭ , ∀τ∈T }

]

= E

[
∏

τ∈T 1{S(τ )≥S♭}

]

= E [π(T )]
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Two snapshots on ongoing research Risk constraints in optimization

90% of the stock trajectories meet the tourism constraint
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Two snapshots on ongoing research Risk constraints in optimization

Our resolution approach brings a sensible improvement
compared to standard procedures
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Two snapshots on ongoing research Risk constraints in optimization

However, though the expected payoff is optimal,
the payoff effectively realized can be far from it
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Two snapshots on ongoing research Risk constraints in optimization

We propose a stochastic viability formulation
to treat symmetrically and to guarantee

both environmental and economic objectives

� Given two thresholds to be guaranteed

� a volume S♭ (measured in cubic hectometers hm3)
� a payoff P♭ (measured in numeraire $)

� we look after policies achieving the maximal viability probability

Π(S♭,P♭) = max Proba







water inflow scenarios along which

the volumesS(t) ≥ S♭

for all time t ∈ { July, August }

and the final payoff P(T ) ≥ P♭







� Π(S♭,P♭) is the maximal probability
to guarantee to be above the thresholds S♭ and P♭
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Two snapshots on ongoing research Risk constraints in optimization

The stochastic viability formulation
requires to redefine state and dynamics

� The state is the couple x(t) =
(
S(t),P(t)

)
volume/payoff

� The control u(t) = q(t) is the turbined water

� The dynamics is

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

} ,

t = t0, . . . ,T − 1

P(t + 1)
︸ ︷︷ ︸

future payoff

= P(t)
︸︷︷︸

payoff

+ p(t)q(t) − ǫq(t)2
︸ ︷︷ ︸

turbined water payoff

, t = t0, . . . ,T − 2

P(T ) = P(T − 1) + K
(
S(T )

)

︸ ︷︷ ︸

final volume utility
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Two snapshots on ongoing research Risk constraints in optimization

In the stochastic viability formulation,
we dress objectives as state constraints

� The control constraints are

u(t) ∈ B
(
t, x(t)

)
⇐⇒ 0 ≤ q(t) ≤ min{S(t), q♯}

� The state constraints are

x(t) ∈ A(t) ⇐⇒

{
S(t) ≥ S♭ , ∀t ∈ { July, August }

P(T ) ≥ P♭
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Two snapshots on ongoing research Risk constraints in optimization

For each couple of thresholds on payoff and stock,
we write a dynamic programming equation

� Abstract version

V (T , x) = 1A(T )(x)

V (t, x) = 1A(t)(x) max
u∈B(t,x)

Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))]

� Specific version

V (T , S,P) = 1{P≥P♭}

V (T − 1, S,P) = max
0≤q≤min{S,q♯}

Ea(T−1),p(T−1)

[

V
(

t + 1,S − q + a(t),P + K

(

S
)

)]

V (t, S,P) = max
0≤q≤min{S,q♯}

Ea(t),p(t)

[

V
(

t + 1,S − q + a(t),P + p(t)q − ǫq2
)]

,

t 6∈ { July, August }

V (t, S,P) = 1{S≥S♭} max
0≤q≤min{S,q♯}

Ea(t),p(t)

[

V
(

t + 1, S − q + a(t),P + p(t)q − ǫq2
)]

,

t ∈ { July, August }
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Two snapshots on ongoing research Risk constraints in optimization

We plot iso-values for the maximal viability probability

as a function of guaranteed thresholds S ♭ and P
♭
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Two snapshots on ongoing research Risk constraints in optimization

The probability distribution of the random gain
reflects the viability objectives

Michel DE LARA (Cermics, France) GIMEL-CONOSER-UdeA, Medellin, 14 November 2014 November 14, 2014 120 / 125



Two snapshots on ongoing research Risk constraints in optimization

Contribution to quantitative sustainable management

� Conceptual framework for
quantitative sustainable
management

� Managing ecological and economic
conflicting objectives

� Displaying tradeoffs between
ecology and economy sustainability
thresholds and risk
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A need for training and research

Outline of the presentation

1 Long term industry-academy cooperation

2 The remolding of power systems seen from an optimizer perspective

3 Moving from deterministic to stochastic dynamic optimization

4 Two snapshots on ongoing research

5 A need for training and research
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A need for training and research

Trends are favorable to statistics and optimization

� More telecom technology
→֒ more data

� More data, more unpredicability
→֒ more statistics

� More unpredicability
→֒ more storage
→֒ more dynamic optimization

� More unpredicability
→֒ more stochastic dynamic
optimization
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A need for training and research

A context of increasing complexity

� Multiple energy resources: photovoltaic,
solar heating, heatpumps, wind, hydraulic
power, combined heat and power

� Spatially distributed energy resources
(onshore and offshore windpower,
solarfarms), producers, consumers

� Strongly variable production: wind, solar

� Intermittent demand: electrical vehicles

� Two-ways flows in the electrical network

� Environmental and risk constraints
(CO2, nuclear risk, land use)
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A need for training and research

Challenges ahead for stochastic optimization

� large scale stochastic
optimization

� various risk constraints

� decentralized and private
information

� game theory, stochastic
equilibrium, market
design. . .
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Large scale storage systems stand as powerful motivation
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To make a long story short

We look after strategies as solutions of large scale stochastic optimal
control problems,
for example, the optimal management over a given time horizon
of a large amount of dynamical production units

� To obtain decision strategies (closed-loop controls),
we use Dynamic Programming or related methods

� Assumption: Markovian case
� Difficulty: curse of dimensionality

� To use decomposition/coordination techniques, we have to deal with
the information pattern of the stochastic optimization problem
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Lecture outline

1 Decomposition and coordination
A bird’s eye view of decomposition methods
(A brief insight into Progressive Hedging)
Spatial decomposition methods in the deterministic case
The stochastic case raises specific obstacles

2 Dual approximate dynamic programming (DADP)
Problem statement
DADP principle and implementation
Numerical results on a small size problem

3 Theoretical questions
Existence of a saddle point
Convergence of the Uzawa algorithm
Convergence w.r.t. information

4 Conclusion
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Decomposition and coordination A bird’s eye view of decomposition methods

Decomposition-coordination: divide and conquer

� Spatial decomposition

� Multiple players with their local information
� Scales: local / regional / national /supranational

� Temporal decomposition

� A state is an information summary
� Time coordination realized through Dynamic Programming, by value

functions
� Hard nonanticipativity constraints

� Scenario decomposition

� Along each scenario, sub-problems are deterministic (powerful
algorithms)

� Scenario coordination realized through Progressive Hedging,
by updating nonanticipativity multipliers

� Soft nonanticipativity constraints
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Decomposition and coordination A bird’s eye view of decomposition methods

Couplings for stochastic problems

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(x

i
t ,u

i
t ,wt+1)

s.t. xit+1 = f it (x
i
t ,u

i
t ,wt+1)

uit = E

(
uit

∣∣∣∣ w1, . . . ,wt

)

∑

i

θit(x
i
t ,u

i
t) = 0
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Decomposition and coordination A bird’s eye view of decomposition methods

Couplings for stochastic problems: in time

unit

time

uncertainty
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∑
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∑
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Decomposition and coordination A bird’s eye view of decomposition methods

Couplings for stochastic problems: in uncertainty

unit

time

uncertainty

min
∑
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Decomposition and coordination A bird’s eye view of decomposition methods

Couplings for stochastic problems: in space
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time
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min
∑

ω

∑

i

∑

t

πωL
i
t(x

i
t ,u

i
t ,wt+1)

s.t. xit+1 = f it (x
i
t ,u

i
t ,wt+1)

uit = E

(
uit

∣∣∣∣ w1, . . . ,wt

)

∑

i

θit(x
i
t ,u

i
t) = 0
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Decomposition and coordination A bird’s eye view of decomposition methods

Can we decouple stochastic problems?

unit

time

uncertainty
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∑
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Decomposition and coordination A bird’s eye view of decomposition methods

Decompositions for stochastic problems: in time

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
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i
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Dynamic Programming
Bellman (56)
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Decomposition and coordination A bird’s eye view of decomposition methods

Decompositions for stochastic problems: in uncertainty

unit

time

uncertainty

min
∑
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Progressive Hedging
Rockafellar - Wets (91)
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Decomposition and coordination A bird’s eye view of decomposition methods

Decompositions for stochastic problems: in space

unit

time

uncertainty

min
∑
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Dual Approximate
Dynamic Programming
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Decomposition and coordination (A brief insight into Progressive Hedging)

Outline of the presentation

1 Decomposition and coordination
A bird’s eye view of decomposition methods
(A brief insight into Progressive Hedging)
Spatial decomposition methods in the deterministic case
The stochastic case raises specific obstacles

2 Dual approximate dynamic programming (DADP)
Problem statement
DADP principle and implementation
Numerical results on a small size problem

3 Theoretical questions
Existence of a saddle point
Convergence of the Uzawa algorithm
Convergence w.r.t. information

4 Conclusion
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Decomposition and coordination (A brief insight into Progressive Hedging)

Non-anticipativity constraints are linear

t=0 t=1 t=2 t=3 t=T t=0 t=1 t=2 t=3 t=T

N scenarios Scenarios tree

� From tree to scenarios (comb)

� Equivalent formulations of the
non-anticipativity constraints

� pairwise equalities
� all equal to their

mathematical expectation

� Linear structure

ut = E

(
ut

∣∣∣∣ w1, . . . ,wt

)
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Decomposition and coordination (A brief insight into Progressive Hedging)

Progressive Hedging stands as
a scenario decomposition method
by dualizing the non-anticipativity constraints

� When the criterion is strongly convex,
we use an algorithm “à la Uzawa”
to obtain a scenario decomposition

� When the criterion is linear,
Rockafellar - Wets (91) propose to use an augmented Lagrangian,
and obtain the Progressive Hedging algorithm
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Decomposition and coordination (A brief insight into Progressive Hedging)

Data: Initial multipliers
{
{λ

(0)
t (ω)}T−1

t=0

}
ω∈Ω

and mean control
{
U

(0)
n

}
n∈T

;
Result: optimal feedback;
repeat

forall the scenario ω ∈ Ω do
Solves the deterministic minimization problem for scenario ω with
a measurability penalization, and obtain optimal control u(k+1);

Update the mean controls

u
(k+1)
n =

∑
ω∈n u

(k+1)
t (ω)

|n|

Update the measurability penalization with

λ
(k+1)
t (ω) = λ

(k)
t (ω) + ρ

(
Ut(ω)

(k+1) − u
(k+1)
nt(ω)

)

until ut − E
(
uit

∣∣ w1, . . . ,wt

)
= 0;
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Decomposition and coordination Spatial decomposition methods in the deterministic case

1 Decomposition and coordination
A bird’s eye view of decomposition methods
(A brief insight into Progressive Hedging)
Spatial decomposition methods in the deterministic case
The stochastic case raises specific obstacles

2 Dual approximate dynamic programming (DADP)
Problem statement
DADP principle and implementation
Numerical results on a small size problem
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Decomposition and coordination

Unit 1 Unit N

Unit 2 Unit 3

Interconnected units

� The system to be optimized consists of
interconnected subsystems

� We want to use this structure
to formulate optimization subproblems
of reasonable complexity

� But the presence of interactions
requires a level of coordination

� Coordination iteratively provides
a local model of the interactions
for each subproblem

� We expect to obtain the solution of the
overall problem by concatenation of the
solutions of the subproblems
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Example: the “flower model”

Unit 2

Unit 1 Unit N

Unit 3

Coupling

constraint

min
u

N∑

i=1

Ji (ui )

s.t.

N∑

i=1

θi (ui ) = θ

Unit Commitment Problem
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Intuition of spatial decomposition

Unit
1

Unit
2

Unit
3

Coordinator

� Purpose: satisfy a demand
with N production units,
at minimal cost

� Price decomposition

� the coordinator sets a price λt

� the units send their
production u

(i)
t

� the coordinator compares total
production and demand, and then
updates the price

� and so on...
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Price decomposition relies on dualization

min
ui∈Ui ,i=1...N

N∑

i=1

Ji (ui ) subject to

N∑

i=1

θi (ui )− θ = 0

1 Form the Lagrangian and assume that a saddle point exists

max
λ∈V

min
ui∈Ui ,i=1...N

N∑

i=1

(
Ji (ui ) +

〈
λ , θi (ui )

〉)
−
〈
λ , θ

〉

2 Solve this problem by the dual gradient algorithm “à la Uzawa”

u
(k+1)
i ∈ argmin

ui∈Ui

Ji (ui ) +
〈
λ(k) , θi (ui )

〉
, i = 1 . . . ,N

λ(k+1) = λ(k) + ρ

( N∑

i=1

θi

(
u
(k+1)
i

)
− θ

)
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Remarks on decomposition methods

� The theory is available for infinite dimensional Hilbert spaces,
and thus applies in the stochastic framework, that is,
when the Ui are spaces of random variables

� The minimization algorithm used for solving the subproblems
is not specified in the decomposition process

� New variables λ(k) appear in the subproblems
arising at iteration k of the optimization process

min
ui∈Ui

Ji (ui ) +
〈
λ(k) , θi (ui )

〉

� These variables are fixed when solving the subproblems,
and do not cause any difficulty, at least in the deterministic case
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Price decomposition applies to various couplings

DECOMPOSITION
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Decomposition and coordination The stochastic case raises specific obstacles
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Decomposition and coordination The stochastic case raises specific obstacles

Stochastic optimal control (SOC) problem formulation

Consider the following SOC problem

min
u,x

E

( N∑

i=1

( T−1∑

t=0

Lit(x
i
t ,u

i
t ,wt+1) + K i (xiT )

))

subject to the constraints

xi0 = f i-1(w0) , i = 1 . . .N

xit+1 = f it (x
i
t ,u

i
t ,wt+1) , t = 0 . . .T−1 , i = 1 . . .N

uit � Ft = σ(w0, . . . ,wt) , t = 0 . . .T−1 , i = 1 . . .N

N∑

i=1

θit(x
i
t ,u

i
t) = 0 , t = 0 . . .T−1
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Decomposition and coordination The stochastic case raises specific obstacles

Dynamic Programming yields centralized controls

� As we want to solve this SOC problem using Dynamic Programming
(DP), we suppose to be in the Markovian setting, that is,
w0, . . . ,wT are a white noise

� The system is made of N interconnected subsystems,
with the control uit and the state xit of subsystem i at time t

� The optimal control uit of subsystem i is a function
of the whole system state

(
x1t , . . . , x

N
t

)

uit = γ it
(
x1t , . . . , x

N
t

)

Naive decomposition should lead to decentralized feedbacks

uit = γ̂ it(x
i
t)

which are, in most cases, far from being optimal. . .
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Decomposition and coordination The stochastic case raises specific obstacles

Straightforward decomposition of Dynamic Programming?

The crucial point is that the optimal feedback of a subsystem a priori
depends on the state of all other subsystems, so that using a
decomposition scheme by subsystems is not obvious. . .

As far as we have to deal with Dynamic Programming, the central concern
for decomposition/coordination purpose boils down to

?

?

?

?

??

� how to decompose a feedback γt w.r.t.
its domain Xt rather than its range Ut?

And the answer is

� impossible in the general case!
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Decomposition and coordination The stochastic case raises specific obstacles

Price decomposition and Dynamic Programming

When applying price decomposition to the problem by dualizing the
(almost sure) coupling constraint

∑
i θ

i
t(x

i
t ,u

i
t) = 0,

multipliers Λ
(k)
t appear in the subproblems arising at iteration k

min
ui ,xi

E

(∑

t

Lit(x
i
t ,u

i
t ,wt+1) + Λ

(k)
t · θit(x

i
t ,u

i
t)
)

� The variables Λ
(k)
t are fixed random variables, so that the random

process Λ(k) acts as an additional input noise in the subproblems

� But this process may be correlated in time, so that
the white noise assumption has no reason to be fulfilled

� DP cannot be applied in a straightforward manner!

Question: how to handle the coordination instruments Λ
(k)
t

to obtain (an approximation of) the overall optimum?
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Dual approximate dynamic programming (DADP)
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Dual approximate dynamic programming (DADP) Problem statement

Optimization problem

The SOC problem under consideration reads

min
u,x

E

( N∑

i=1

( T−1∑

t=0

Lit(x
i
t ,u

i
t ,wt+1) + K i (xiT )

))
(1a)

subject to dynamics constraints

xi0 = f i-1(w0) (1b)

xit+1 = f it (x
i
t ,u

i
t ,wt+1) (1c)

to measurability constraints:

uit � σ(w0, . . . ,wt) (1d)

and to instantaneous coupling constraints

N∑

i=1

θit(x
i
t ,u

i
t) = 0 Constraints to be dualized (1e)

M. De Lara (École des Ponts ParisTech) UNI, Lima 3 November 2014 26 / 58



Dual approximate dynamic programming (DADP) Problem statement

Assumptions

Assumption 1 (White noise)

Noises w0, . . . ,wT are independent over time

Hence Dynamic Programming applies: there is no optimality loss
to look after the controls uit as functions of the state at time t

Assumption 2 (Constraint qualification)

A saddle point of the Lagrangian L exists

L
(

x, u,Λ
)

= E

(

N
∑

i=1

( T−1
∑

t=0

L
i
t(x

i
t , u

i
t ,wt+1) + K

i (xiT ) +

T−1
∑

t=0

Λt · θ
i
t(x

i
t , u

i
t)

)

)

where the Λt are σ(w0, . . . ,wt)-measurable random variables

Assumption 3 (Dual gradient algorithm)

Uzawa algorithm applies. . .
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Dual approximate dynamic programming (DADP) Problem statement

Uzawa algorithm

At iteration k of the algorithm,
1 Solve Subproblem i , i = 1, . . . ,N, with Λ(k) fixed

min
ui ,xi

E

( T−1∑

t=0

(
Lit(x

i
t ,u

i
t ,wt+1) + Λ

(k)
t · θit(x

i
t ,u

i
t)
)
+ K i (xiT )

)

subject to

xit+1 = f it (x
i
t ,u

i
t ,wt+1)

uit � σ(w0, . . . ,wt)

whose solution is denoted
(
ui ,(k+1), xi ,(k+1)

)

2 Update the multipliers Λt

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑

i=1

θit
(
x
i,(k+1)
t ,u

i,(k+1)
t

))
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Dual approximate dynamic programming (DADP) Problem statement

Structure of a subproblem

� Subproblem i reads

min
ui ,xi

E

( T−1∑

t=0

(
Lit(x

i
t ,u

i
t ,wt+1) + Λ

(k)
t · θit(x

i
t ,u

i
t)
))

subject to

xit+1 = f it (x
i
t ,u

i
t ,wt+1)

uit � σ(w0, . . . ,wt)

� Without some knowledge of the process Λ(k)

(we just know that Λ
(k)
t � (w0, . . . ,wt)),

the informational state of this subproblem i at time t

cannot be summarized by the physical state xit

M. De Lara (École des Ponts ParisTech) UNI, Lima 3 November 2014 29 / 58



Dual approximate dynamic programming (DADP) DADP principle and implementation
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Dual approximate dynamic programming (DADP) DADP principle and implementation

We outline the main idea in DADP

� To overcome the difficulty induced by the term Λ
(k)
t ,

we introduce a new adapted information process yi =
(
yi0, . . . , y

i
T−1

)

for Subsystem i

� at each time t, the random variable yit
is measurable w.r.t. the past noises

(
w0, . . . ,wt

)

� The core idea is to replace the multiplier Λ
(k)
t at iteration k

by its conditional expectation E(Λ
(k)
t | yit)

� (More on the interpretation later)

Note that we require that the information process is not influenced by controls
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Dual approximate dynamic programming (DADP) DADP principle and implementation

We can now approximate Subproblem i

� Using this idea, we replace Subproblem i by

min
ui ,xi

E

( T−1∑

t=0

(
Lit(x

i
t ,u

i
t ,wt+1) + E(Λ

(k)
t | yit) · θ

i
t(x

i
t ,u

i
t)
)
+ K i (xiT )

)

subject to

xit+1 = f it (x
i
t ,u

i
t ,wt+1)

uit � σ(w0, . . . ,wt)

� The conditional expectation E(Λ
(k)
t | yit) is

an (updated) function of the variable yit ,

� so that Subproblem i involves the two noises processes w and yi

If yi follows a dynamical equation, DP applies
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Dual approximate dynamic programming (DADP) DADP principle and implementation

We obtain a Dynamic Programming equation by subsystem

Assuming a non-controlled dynamics yit+1 = hit
(
yit ,wt+1

)

for the information process yi , the DP equation writes

V i
T (x , y) = K i (x)

V i
t (x , y) = min

u
E

(
Lit(x , u,wt+1)

+ E
(
Λ
(k)
t

∣∣ yit = y
)
· θit(x , u)

+ V i
t+1

(
xit+1, y

i
t+1

))

subject to the dynamics

xit+1 = f it (x , u,wt+1)

yit+1 = hit(y ,wt+1)
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Dual approximate dynamic programming (DADP) DADP principle and implementation

DADP displays three interpretations

� DADP as an approximation of the optimal multiplier

λt  E
(
λt

∣∣ yt
)

� DADP as a decision-rule approach in the dual

max
λ

min
u

L
(
λ,u

)
 max

λt�yt
min
u

L
(
λ,u

)

� DADP as a constraint relaxation

n∑

i=1

θit
(
uit
)
= 0  E

( n∑

i=1

θit
(
uit
) ∣∣∣∣ yt

)
= 0
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Dual approximate dynamic programming (DADP) DADP principle and implementation

A bunch of practical questions remains open

⋆ How to choose the information variables yit?

� Perfect memory: yit =
(
w0, . . . ,wt

)

� Minimal information: yit ≡ cste

� Static information: yit = hit
(
wt

)

� Dynamic information: yit+1 = hit
(
yit ,wt+1

)

⋆ How to obtain a feasible solution from the relaxed problem?

� Use an appropriate heuristic!

⋆ How to accelerate the gradient algorithm?

� Augmented Lagrangian

� More sophisticated gradient methods

⋆ How to handle more complex structures than the flower model?
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Dual approximate dynamic programming (DADP) Numerical results on a small size problem
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Dual approximate dynamic programming (DADP) Numerical results on a small size problem

We consider 3 dams in a row, amenable to DP

DECOMPOSITION
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Dual approximate dynamic programming (DADP) Numerical results on a small size problem

Problem specification

� We consider a 3 dam problem, over 12 time steps

� We relax each constraint with a given information process yi

� All random variable are discrete (noise, control, state)

� We test the following information processes

Constant information: equivalent to replace the a.s. constraint
by an expected constraint

Part of noise: the information process is the inflow of the above dam
Yi

t = wi−1
t

Phantom state: the information process mimicks the
optimal trajectory of the state of the first dam
(by statistical regression over the known optimal
trajectory in this case)
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Dual approximate dynamic programming (DADP) Numerical results on a small size problem

Numerical results are encouraging

DADP - E DADP - wi−1 DADP - dyn. DP

Nb of it. 165 170 25 1

Time (min) 2 3 67 41

Lower Bound −1.386× 106 −1.379× 106 −1.373× 106

Final Value −1.335× 106 −1.321× 106 −1.344× 106 −1.366× 106

Loss −2.3% −3.3% −1.6% ref.

 PhD thesis of J.-C. Alais
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Dual approximate dynamic programming (DADP) Numerical results on a small size problem

Summing up DADP

� Choose an information process y following yt+1 = f̃t
(
yt ,wt+1

)

� Relax the almost sure coupling constraint
into a conditional expectation

� Then apply a price decomposition scheme to the relaxed problem

� The subproblems can be solved by dynamic programming
with the modest state

(
xit , yt

)

� In the theoretical part, we give

� a consistency result (family of information process)
� a convergence result (fixed information process)
� conditions for the existence of multiplier

M. De Lara (École des Ponts ParisTech) UNI, Lima 3 November 2014 40 / 58



Theoretical questions
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Theoretical questions

What are the issues to consider?

� We treat the coupling constraints in a stochastic optimization
problem by duality methods

� Uzawa algorithm is a dual method which is naturally described in an
Hilbert space, but we cannot guarantee the existence of an optimal
multiplier in the space L

2
(
Ω,F ,P;Rn

)
!

� Consequently, we extend the algorithm to the non-reflexive Banach
space L

∞
(
Ω,F ,P;Rn

)
, by giving a set of conditions ensuring the

existence of a L
1
(
Ω,F ,P;Rn

)
optimal multiplier,

and by providing a convergence result of the algorithm

� We also have to deal with the approximation induced by the
information variable: we give an epi-convergence result related to
such an approximation

 PhD thesis of V. Leclère
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Theoretical questions

Abstract formulation of the problem

We consider the following abstract optimization problem

(
P
)

min
u∈Uad

J(u) s.t. Θ(u) ∈ −C

where U and V are two Banach spaces, and

� J : U → R is the objective function

� Uad is the admissible set

� Θ : U → V is the constraint function to be dualized

� C ⊂ V is the cone of constraint

Let UΘ =
{
u ∈ U , Θ(u)∈−C

}
be the associated constraint set

Here, U is a space of random variables, and J is defined by

J(u) = E
(
j(u,w)

)

The relationship with Problem (1) is almost straightforward. . .
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Theoretical questions Existence of a saddle point

Standard duality in L
2 spaces (I)

Assume that U = L
2
(
Ω,F ,P;Rn

)
and V = L

2
(
Ω,F ,P;Rm

)

The standard sufficient constraint qualification condition

0 ∈ ri

(
Θ
(
Uad ∩ dom(J)

)
+ C

)

is scarcely satisfied in such a stochastic setting

Proposition 1

If the σ-algebra F is not finite modulo P,a

then for any subset Uad ⊂ R
n that is not an affine subspace, the set

Uad =
{
u ∈ L

p
(
Ω,F ,P;Rn

)
| u ∈ Uad

P− a.s.
}

has an empty relative interior in L
p, for any p < +∞

aIf the σ-algebra is finite modulo P, U and V are finite dimensional spaces
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Theoretical questions Existence of a saddle point

Standard duality in L
2 spaces (II)

Consider the following optimization problem:

inf
u0,u1

u20 + E
(
(u1 + α)2

)

s.t. u0 ≥ a

u1 ≥ 0

u0 − u1 ≥ w to be dualized

where w is a random variable uniform on [1, 2]

For a < 2, we can construct a maximizing sequence of multipliers for the
dual problem that does not converge in L

2.
(We are in the so-called non relatively complete recourse case, that is, the
case where the constraints on u1 induce a stronger constraint on u0)

An optimal multiplier is available in
(
L
∞
)⋆
. . .
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Theoretical questions Existence of a saddle point

Constraint qualification in
(
L
∞
,L

1
)

From now on, we assume that

U = L
∞
(
Ω,F ,P;Rn

)

V = L
∞
(
Ω,F ,P;Rm

)

C = {0}

where the σ-algebra F is not finite modulo P

We consider the pairing
(
L
∞,L1

)
with the following topologies:

� σ
(
L
∞,L1

)
: weak⋆ topology on L

∞ (coarsest topology

such that all the L
1-linear forms are continuous),

� τ
(
L
∞,L1

)
: Mackey-topology on L

∞ (finest topology

such that the continuous linear forms are only the L
1-linear forms)
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Theoretical questions Existence of a saddle point

Weak⋆ closedness of linear subspaces of L∞

Proposition 2

Let Θ : L∞
(
Ω,F ,P;Rn

)
→ L

∞
(
Ω,F ,P;Rm

)
be a linear operator, and

assume that there exists a linear operator

Θ† : L1
(
Ω,F ,P;Rm

)
→ L

1
(
Ω,F ,P;Rn

)
such that:

〈
v ,Θ(u)

〉
=

〈
Θ†(v) ,u

〉
, ∀u, ∀v

Then the linear operator Θ is weak⋆ continuous

Applications

� Θ(u) = u− E
(
u
∣∣ B

)
: non-anticipativity constraints,

� Θ(u) = Au with A ∈ Mm,n(R): finite number of constraints
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Theoretical questions Existence of a saddle point

A duality theorem

(
P
)

min
u∈U

J(u) s.t. Θ(u) = 0

with J(u) = E
(
j(u,w)

)

Theorem 1

Assume that j is a convex normal integrand, that J is continuous in the

Mackey topology at some point u0 such that Θ(u0) = 0, and that Θ is

weak⋆ continuous on L
∞
(
Ω,F ,P;Rn

)

Then, u⋆ ∈ U is an optimal solution of Problem
(
P
)
if and only if there

exists λ⋆ ∈ L
1
(
Ω,F ,P;Rm

)
such that

� u⋆ ∈ argmin
u∈U

E

(
j(u,w) + λ⋆ ·Θ(u)

)

� Θ(u⋆) = 0

Extension of a result given by R. Wets for non-anticipativity constraints
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Theoretical questions Convergence of the Uzawa algorithm

Uzawa algorithm

(
P
)

min
u∈U

J(u) s.t. Θ(u) = 0

with J(u) = E
(
j(u,w)

)

The standard Uzawa algorithm

u(k+1) ∈ argmin
u∈Uad

J(u) +
〈
λ(k) ,Θ(u)

〉

λ(k+1) = λ(k) + ρ Θ
(
u(k+1)

)

makes sense with in the L
∞ setting, that is, the minimization problem is

well-posed and the update formula is valid one

Note that all the multipliers λ(k) belong to L
∞
(
Ω,F ,P;Rm

)
,

as soon as the initial multiplier λ(0) ∈ L
∞
(
Ω,F ,P;Rm

)
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Theoretical questions Convergence of the Uzawa algorithm

Convergence result

Theorem 2

Assume that

1 J : U → R is proper, weak⋆ l.s.c., differentiable and a-convex

2 Θ : U → V is affine, weak⋆ continuous and κ-Lipschitz

3 Uad is weak⋆ closed and convex,

4 an admissible u0 ∈ dom J ∩Θ−1(0) ∩ Uad exists

5 an optimal L1-multiplier to the constraint Θ
(
u
)
= 0 exists

6 the step ρ is such that 0 < ρ < 2a
κ

Then, there exists a subsequence
{
u(nk )

}
k∈N

of the sequence generated by

the Uzawa algorithm converging in L
∞ toward the optimal solution u⋆ of

the primal problem
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Theoretical questions Convergence of the Uzawa algorithm

Remarks about these results

� The result is not as good as expected (global convergence)

� Improvements and extensions (inequality constraint) needed

� The Mackey-continuity assumption forbids the use of bounds

� In order to deal with almost sure bound constraints, we can turn
towards the work of R.T. Rockafellar and R. J-B Wets

� In a series of 4 papers (stochastic convex programming), they have
detailed the duality theory on two-stage and multistage problems,
with the focus on non-anticipativity constraints

� These papers require

a strict feasability assumption
a relatively complete recourse assumption
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Theoretical questions Convergence w.r.t. information

Relaxed problems

Following the interpretation of DADP in terms of a relaxation of the
original problem, and given a sequence {Fn}n∈N of subfields
of the σ-field F , we replace the abstract problem

(
P
)

min
u∈U

J(u) s.t. Θ(u) = 0

by the sequence of approximated problems:

(
Pn

)
min
u∈U

J(u) s.t. E
(
Θ(u)

∣∣ Fn

)
= 0

We assume the Kudo convergence of {Fn}n∈N toward F :

Fn −→ F ⇐⇒ ∀x ∈ L
1(Ω,F ,P;R), E

(
x
∣∣ Fn

) L
1

−→ E
(
x
∣∣ F

)
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Theoretical questions Convergence w.r.t. information

Convergence result

Theorem 3

Assume that

� U is a topological space

� V = L
p(Ω,F ,P;Rm) with p ∈ [1,+∞)

� J and Θ are continuous operators

� {Fn}n∈N Kudo converges toward F

Then the sequence {J̃n}n∈N epi-converges toward J̃, with

J̃n =

{
J(u) if u satisfies the constraints of

(
Pn

)

+∞ otherwise

M. De Lara (École des Ponts ParisTech) UNI, Lima 3 November 2014 56 / 58



Conclusion

1 Decomposition and coordination

2 Dual approximate dynamic programming (DADP)

3 Theoretical questions

4 Conclusion
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Conclusion

Conclusion

� DADP method allows to tackle
large-scale stochastic optimal control problems,
such as those found in energy management

� A host of theoretical and practical questions remains open

� We would like to test DADP on (smart) grids, extending the works
on “flower models” (Unit Commitment problem) and
on “chained models” (hydraulic valley management)
to “network models” (grids)
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