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General Introduction

Lot Sizing = Determination of sizes of (production or 
distribution) lots, i.e. quantities of products (to produce or 
distribute).

This talk is concerned with “Dynamic” lot sizing, i.e. demands 
dt are varying on a time horizon decomposed in T periods.

The goal is to determine a plan, i.e. the quantity Xt at each 
period t, which results in an inventory level It following the 
well-known inventory balance equation:
It = It-1 + Xt − dt

Lot Sizing usually means setups, 
i.e. setup variable Yt = 1 if Xt > 0 and, Yt = 0 otherwise.

Basic trade-off: inventory cost vs setup cost, however 
production cost vs inventory cost vs setup cost is also possible.

General Introduction

Example of a plan on a single item.

Setup Setup Setup Setup
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General Introduction
Modeling Setups

Setup time
Production time

Time

“Extra big” time buckets:
Time

Big time buckets:
Time

Small time buckets:

Focus of this talk

General Introduction
Modeling Setups

• In big time bucket models, there is one setup for each period in 
which the product is produced.

• Classical big time bucket models:
– The Uncapacitated Lot-Sizing Problem (ULSP)

(Wagner-Whitin problem)
– The Capacitated Lot-Sizing Problem (CLSP)

Time

Big time buckets:



Synthèse sur les problèmes de lot sizing et perspectives

S. DAUZERE-PERES 4

General Introduction
Modeling Setups

• In multi-item production, a setup can sometimes be saved by 
letting the same product produced last in a given period to be 
produced first in the next period (production carryovers):

• Most big time bucket models do not take into account 
carryovers and, in such cases, small time bucket models may 
be better suited.

• However, Aras and Swanson [1982] proposed a modification 
so that production carryovers can also be handled by big time 
bucket models.

Time

General Introduction
Modeling Setups

• When time buckets are small, there is only one setup even if a 
production lot lasts for several periods
→Means of considering scheduling decisions in lot-sizing models 

• Some small time bucket models:
– The Discrete Lot-sizing and Scheduling Problem (DLSP),

→ See presentation of C. Gicquel,
– The Continuous Setup Lot-sizing Problem (CSLP),
– The Proportional Lot-sizing and Scheduling Problem (PLSP),
– The General Lot-sizing and Scheduling Problem (GLSP).

Time

Small time buckets:
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General Introduction
Modeling Setups

• Time buckets are so big that each individual setup is not 
important for the total production capacity; there will normally 
be several setups for each product in the period.

• Setups are therefore not considered at all (“aggregate 
production planning”), and a pure LP model can be used.

• “Average setup time” is either deducted from the total 
capacity, or production time per unit is increased in order to 
compensate for the setup time.

Time

“Extra big” time buckets:

General Introduction

Lot-Sizing problems are useful in production and distribution, 
where many practical problems can be found.

The study of lot-sizing problems has been driven by the 
development of APS (Advanced Planning Systems).
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General Introduction

Renewal from the mid-2000’s, illustrated by the success of the  
International Workshop on Lot Sizing (IWLS) started in 
Gardanne in 2010.

General Introduction
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Problem modeling
Uncapacitated Lot-Sizing Problem (USLP)

• Decision variables:
Yt = 1 if production (setup) in period t, = 0 otherwise
Xt = Production quantity in period t
It = Inventory at the end of period t

• Parameters:
dt = Demand in period t
vt = Variable production cost per unit in period t
st = Setup cost in period t
ct = Inventory holding cost per unit on stock at the end of period t

Problem modeling
Uncapacitated Lot-Sizing Problem (USLP)

Min  ( )∑
=

++
T

t
tttttt IcXvYs

1
 

subject to : 
 tttt dIIX =−+ −1  t∀  
 ttt YMX ≤   t∀  
 0, ≥tt IX   t∀  
 { }1,0=tY   t∀  

Where Mt is an upper bound of Xt, e.g. Mt = dt + … + dT. 
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Problem modeling
Uncapacitated Lot-Sizing Problem (USLP)

Analysis of the Linear Relaxation, i.e. when Y ≥ 0.
What happens to Yt in an optimal solution?
→ Yt will be equal to Xt / Mt (as long as setup cost st > 0),
→ If Mt is much larger than Xt, then Yt will be close to zero,
→ Optimal value of LP relaxation will be much lower than 

optimal value of original problem.
→ Efficiency of standard solvers depend on choice of Mt.  
→ Various valid inequalities have been proposed. 

Problem modeling
Uncapacitated Lot-Sizing Problem (USLP)

Valid inequality (l, S). (Barany, Van Roy and Wolsey, 1984)
By definition, if there is a production in period t (i.e. Xt > 0 and 
Yt = 1), then dt is produced in t. 
→ The following inequality is valid: Xt ≤ dt Yt + It. 
This inequality can be generalized to two periods:

Xt + Xt+1 ≤ (dt + dt+1)Yt + dt+1 Yt+1  + It+1

and to any number of periods. 
(l, S) inequalities (exponential number) can be used to fully 
describe the convex hull of the USLP.

∑ ∑∑
∈ =∈

+≤
Sl

tl

t

lk
k

Sl
l IYdX )(  t∀ , { }tS ,,1K⊆∀   
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Problem modeling
Single-item Lot-Sizing Problems

Uncapacitated can be solved in O(T2) (Wagner and Whitin, 1958) 
and O(T logT) (Federgruen and Tzur, 1991) (Wagelmans, van 
Hoesel and Kolen, 1992) (Aggarwal and Park, 1993).
Capacited single-item lot sizing:
Notation  α / β / γ / δ (Bitran and Yanasse, 1982)

α, β, γ, δ = Z (Zero), C (Constant), NI (Non Increasing), ND 
(Non Decreasing), G (General)

Setup 
cost

Holding 
cost

CapacityProduction 
cost

Problem modeling
Single-item Lot-Sizing Problems

Capacited single-item lot sizing:
The general case is NP-hard.
Polynomial cases:

Problem Complexity References

NI/G/NI/ND O(T4)
O(T2)

Bitran and Yanasse  (1982)
Chung and Lin  (1988)

NI/G/NI/C O(T3) Bitran and Yanasse (1982)

C/Z/C/G O(TlogT) Bitran and Yanasse (1982)

ND/Z/ND/NI O(T) Bitran and Yanasse (1982)

G/G/G/C O(T4)
O(T3)

Florian and Klein  (1971)
Van Hoesel and Wagelmans  (1996)
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Problem modeling
Multi-item Lot-Sizing Problem (CLSP)

• Decision variables:
Yit = 1 if production (setup) of item i in period t, = 0 otherwise
Xit = Production quantity of item i in period t
Iit = Inventory of item i at the end of period t

• Parameters:
dit = Demand for item i in period t
vit = Variable production cost per unit of item i in period t
sit = Setup cost for item i in period t
cit = Inventory holding cost per unit of item i on stock at the end of 

period t
pit = Production time per unit of item i in period t
ht = Available time for production in period t

Problem modeling
Multi-item Lot-Sizing Problem (CLSP)

CLSP is NP hard in the strong sense (Chen and Thizy, 1990).

Min  ( )∑∑
==

++
T

t
itititititit
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subject to : 
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≤
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i
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   t∀  

 ititit YMX ≤    ti ∀∀ ,
 0, ≥itit IX    ti ∀∀ ,
 { }1,0∈itY    ti ∀∀ ,



Synthèse sur les problèmes de lot sizing et perspectives

S. DAUZERE-PERES 11

Problem modeling
CLSP with setup times

New parameter: τit = Fixed setup time of item i in period t

With setup times, checking that a feasible solution exists is 
already NP-Complete (Trigeiro, Thomas and McClain, 1989).
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Problem modeling
CLSP with backlog

New variable: Bit = Backlog of item i at the end of period t
New parameter: bit = Variable cost per unit of i backordered in t

Single-item case solved in O(T2) with an extension of Wagner-
Whitin algorithm (Zangwill, 1969).
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Problem modeling
CLSP with lost sales

New variable: Lit = Lost sale of item i at the end of period t
New parameter: lit = Variable cost per unit of i lost in t

Single-item case solved in O(T2) (Aksen, Altinkemer and Chand, 
2003).
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Problem modeling
CLSP with lost sales

New variable: Lit = Lost sale of item i at the end of period t
New parameter: lit = Variable cost per unit of i lost in t

Lagrangian based metaheuristics proposed for the multi-item case 
(Absi, Detienne and D.-P., 2013).
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Classifications

Lot 
Sizing

Single 
Level

Multi 
Level

Single 
Product

Multi 
product

Backlogging

Perishable 
products

Remanufacturing

With capacity

No capacity

Zangwill (1969)

Hsu (2000)

Golany, Yan, Yu (2001)

Florian et Klein (1971)

Wagner et Whitin (1958)
State of the art
Brahimi et al. 2006

Multi 
product

Time windows 
on demands

Lee, Cetinkaya, 
Wagelmans (2001)

Classifications

Lot 
Sizing

Single 
Level

Multi 
Level

Single 
Product

Multi 
product

Multi 
product

Backlogging

Perishable 
products

Remanufacturing

Capacity

Setup times

Joint setups

Manne (1958) 

Trigeiro et al. (1989)

Suerie et Stadtler (2003)

Millar et Yang (1993)

Friedman et Hoch (1978)

Richter et Sonbrutzki (2000)

State of the art
Karimi et al. 2003
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Tighter formulations

Multiple formulations were proposed for the single-item and 
multi-item problems to improve on the linear relaxation of 
the aggregate formulation, and get better solutions with a 
standard solver.

Disaggregate formulation
Uncapacitated Lot-Sizing Problem (ULSP)

Also called facility location model (Krarup and Bilde, 1977).
• New variable: Ztk = quantity produced in period t to cover 

demand in period k.
• New parameter: cdtk = variable production cost plus inventory 

cost for producing one unit in period t and storing it until 
period k, i.e.

∑
−

=
−−++ +=++++++=

1

1221 ...
k

tu
utkktttttk cvcccccvcd
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Disaggregate formulation
Uncapacitated Lot-Sizing Problem (ULSP)

Min  ∑
=

T

t
ttYs

1
+∑∑

= =

T

t

T

tk
tktk Zcd

1
 

 k

k

t
tk dZ =∑

=1
  k∀  

 tktk YdZ ≤   tkt ≥∀∀ ,  
 0≥tkZ   tkt ≥∀∀ ,  
 { }1,0=tY   t∀  

Disaggregate formulation
Capacited Lot-Sizing Problem (CLSP)

• New variable: Zitk = quantity of item i produced in period t to 
cover demand in period k.

• New parameter: cditk = variable production cost plus 
inventory cost for producing one unit of item i in period t and 
storing it until period k, i.e.

∑
−

=
−−++ +=++++++=

1

1221 ...
k

tu
iuitikikitititititk cvcccccvcd
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Disaggregate formulation
Capacited Lot-Sizing Problem (CLSP)

Min  ∑∑
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Shortest Path formulation
Capacited Lot-Sizing Problem (CLSP)

(Eppen and Martin, 1987)
• New variable: ZZitk = fraction of total demand of item i for 

periods t through k that is produced in period t (∈ [0,1]).
• New parameter: ccitk = variable production cost plus 

inventory cost for producing in period t and storing the 
demands from periods t to k of item i, i.e.
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Shortest Path formulation
Capacited Lot-Sizing Problem (CLSP)
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Solving the single-item case
Wagner-Whitin algorithm

In the uncapacitated case, the Zero Inventory Order (ZIO) 
property is satisfied, i.e. plans where “It-1 Xt = 0  ∀t” are 
dominant

→ Order quantities cover an integer number of periods in 
dominant plans,

→ There is an optimal solution which is a dominant plan,
→Wagner Whitin algorithm uses ZIO property,
→ ZIO property often checked when analyzing a new lot-sizing 

problem.
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Solving the single-item case
Wagner-Whitin algorithm

Example.
setup cost  st = 15 ∀ t
inventory cost ct = 1 ∀ t
demand dt =  (4, 8, 6, 7)
The dominant plans are:

( 4,  8,  6,   7)
( 4,  8, 13,  0)
( 4, 14,  0,  7)
( 4, 21,  0,  0)
(12,  0,  6,  7) 
(12,  0, 13, 0)
(18,  0,  0,  7) 
(25,  0,  0,  0)

Solving the single-item case
Wagner-Whitin algorithm

In general, there will be 2(T-1) dominant plans.
By using dynamic programming, the Wagner-Whitin algorithm 

further reduces the complexity of the search to T(T+1)/2, i.e. 
O(T2) (Wagner and Whitin, 1958).
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Solving the single-item case
Wagner-Whitin algorithm

Example.
setup cost  st = 15 ∀ t
inventory cost ct = 1 ∀ t
demand dt =  (4, 8, 6, 7)

Optimal solution.
X1 = 12   X2 = 0   X3 = 13   X4 = 0
I1 = 8      I2 = 0     I3 = 7      I4 = 0
Y1 = 1     Y2 = 0    Y3 = 1     Y4 = 0

Setup costs: 30
Inventory costs: 15
Total costs: 45

Solving the single-item case
Wagner-Whitin algorithm

In general, there will be 2(T-1) dominant plans.
By using dynamic programming, the Wagner-Whitin algorithm 

further reduces the complexity of the search to T(T+1)/2, i.e. 
O(T2) (Wagner and Whitin, 1958).

More recently, the complexity has been reduced to O(T log(T)) 
(Federgruen and Tzur, 1991), (Wagelmans Van Hoesel and 
Kolen, 1992) , (Aggarwal and Park, 1993).
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Solving the single-item case
Heuristics

Heuristics for single-item problems can be useful to solve more 
complex problems and to develop heuristics for multi-item 
problems:

• Part-Period Balancing
Aims at balancing total ordering cost and total holding cost

• Silver and Meal heuristic
Aims at minimizing the cost per period

• Least Unit Cost
Aims at minimizing the total cost per unit of product

Solving the multi-item case
Lagrangian relaxation

Applying Lagrangian relaxation by relaxing coupling capacity 
constraints (Trigeiro, Thomas and McClain, 1989).
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Solving the multi-item case
Lagrangian relaxation

Lagrangian relaxation model.

→ Uncapacitated single-item problems (Wagner Whitin 
problem) can be solved separately in O(T logT).
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Solving the multi-item case
Lagrangian relaxation

Lagrangian relaxation model.

Note that Lagrangian production and setup costs are period 
dependent.
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Solving the multi-item case
Lagrangian relaxation heuristic

1. Solve Lagrangian relaxation model to determine optimal 
values of variables Xit and Yit. 

2. Use solution to compute Lagrangian lower bound of optimal 
solution.  

3. Use values of variables obtained in Step 1 to determine a 
feasible solution of original problem (smoothing heuristic).
Update upper bound (best feasible solution).  

4. Update Lagrange multipliers (subgradient), so that relaxed 
capacity constraints not satisfied have more chances to be 
satisfied at next iteration.
Go to Step 1 if none of the stopping criteria is satisfied (duality gap 

small enough, step size, number of iterations, …).

Solving the multi-item case
Smoothing (feasibility) heuristic

The goal is to ensure feasibility of the plan through forward and 
backward passes.

Forward pass.
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Solving the multi-item case
Smoothing (feasibility) heuristic

Backward pass.

Solving the multi-item case
Smoothing (feasibility) heuristic

Leads to a feasible plan.

Feasibility is not guaranteed (in particular with setup times).
→ Smoothing heuristics can be applied after any heuristic 

building initial unfeasible solutions.  
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Capacited Lot-Sizing Problem (CLSP)
Comparing lower bounds
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Lot Sizing with Time Windows

In classical lot-sizing problems without time windows, all 
demands can be processed as early as the first period.

d4

d5

week 1 week 2 week 3 week 4 week 5

d3

d2

d1

Lot Sizing with Time Windows

In lot-sizing problems with time windows, each demand dst must 
be processed within the time window [s,t].

week 1 week 2 week 3 week 4 week 5

d14

d34

d12

d25

Customer Specific (CS)
(general structure of 
time windows)

d14

d25

d35

d12

week 1 week 2 week 3 week 4 week 5

Non Customer Specific (NCS)
(specific structure of 
time windows)
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Lot Sizing with Time Windows

Complexity for Customer Specific (CS) single-item problem
• Solved using dynamic programming in exponential time in 

(D.-P., Brahimi, Najid and Nordli, 2002).
• Solved in O(T5) in (Huang, 2007) 
Complexity for Non Customer Specific (NCS) single-item 
problem
• Exponential time algorithm for CS problem runs in O(T4) for 

NCS problem (D.-P., Brahimi, Najid and Nordli, 2002).
• Improved to O(T2) in (Wolsey, 2006).
• Generalization to early productions, backlogs and lost sales 

solved in O(T2) in (Absi, Kedad-Sidhoum and D.-P., 2011).
Lagrangian relaxation heuristics proposed in (Brahimi, D.-P. 
and Najid, 2006) for CS and NCS multi-item problems.

Green Lot Sizing
Lot Sizing with carbon emissions

• Recent research on lot sizing is concerned with considering 
new environmental constraints. 

• A global carbon emission constraint is considered in 
(Benjaafar, Li and Daskin, 2010).
→ Acts as a capacity constraint.

• Four types of carbon emission constraints are proposed and 
analyzed in the single-item case in (Absi, D.-P., Kedad-
Sidhoum, Penz and Rapine, 2013). 
→ Theses constraints do not limit lot sizes, but limit the 

carbon emission per unit of product.
→ See presentation of S. Kedad-Sidhoum.
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Multi-Level (Multi-Stage) Lot Sizing

Independent demands (for end products) and dependent 
demands

End product

Subassembly X Subassembly Y

(2) (1)

Part A Part B

(3) (5) (3)

Part C

(2)

Component D Component F

(10) (4)

Component E

(1) (1)

Multi-Level Lot Sizing

New parameter gij: Number of items i necessary to produce one 
unit of item j (gozinto factor).

New inventory balance equation becomes a coupling constraint.
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Multi-Level Lot Sizing

See presentation of J.-P. Casal (FuturMaster).
Various approaches have been proposed: 
• Lagrangian relaxation (Tempelmeier and Derstroff, 1996),
• MIP-based heuristics (used in general for complex lot-sizing 

problems).

MIP-based heuristics for Lot Sizing

• Iterative approaches.
• Solve at each stage a reduced mixed integer problem.
• By reducing the number of binary variables and the number of 

constraints.
• Various decompositions can be used::

– An horizon-oriented decomposition,
– A product-oriented decomposition,
– A resource-oriented decomposition,
– A process-oriented decomposition, etc.
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MIP-based heuristics for Lot Sizing

Several variants:
• Relax-and-Fix, Fix-and-Relax (Kelly 2002, Clark 2003, Mercé and 

Fontan 2003, , Stadtler 2003, Pochet and Van Vyve 2004, Absi and 
kedad-Sidhoum 2007, Federgruen et al. 2007, Seeanner et al. 2013),

• Fix-and-Optimize (Sahling et al. 2009, S Helber, F Sahling 2010, 
Lang and Shen 2011, James and Almada-Lobo 2011).

MIP-based heuristics for Lot Sizing

Example of an horizon-oriented decomposition (Absi and Kedad-
Sidhoum 2007) – Relax-and-Fix

Step 2Step 3Step 1

Frozen window

Decision window

Approximation window

σ: Overlapping section
δ: Size of decision windows

0 T



Synthèse sur les problèmes de lot sizing et perspectives

S. DAUZERE-PERES 32

Integrating Lot-Sizing decisions and 
other types of decisions

More and more researchers are  studying the integration of lot-
sizing decisions with decisions taken at other levels or other 
stages in the supply chain.

Integrating Lot-Sizing decisions and other 
types of decisions

Plant design

Prod. planning

Prod. scheduling

Production
system

Storage capacity

Capacity planning

Storage scheduling

Storage
system

Network design

Transport planning

Vehicle routing

Transport
system

Possible decision processes in a supply chain

Lot Sizing
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Integrating Lot-Sizing decisions and other 
types of decisions

Variables at different levels/stages are often of different 
nature, i.e. no longer pure continuous or integer optimization 
problems 
→Makes the integration particularly complex and changes 

the nature of the problems.
Objectives at different levels/stages may be of different 
nature, e.g. cost minimization vs. time criteria.

Integrating Lot-Sizing and Cutting-
Stock decisions

Column Generation approaches are used in (Nonås and 
Thorstenson, 2000) and (Nonås and Thorstenson, 2008) to 
solve a combined lot-sizing and cutting-stock problem.

(Gramani and França, 2006) analyzes the trade-off in industrial 
problems, where trim loss, storage and setup costs are minimized. 
The problem is solved using a network shortest path formulation.   
(Gramani, França and Arenales, 2009) proposes a Lagragian 
relaxation heuristic.
Heuristics are also proposed in (Poltroniere, Poldi, Toledo and 
Arenales, 2008)
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Integrating Lot-Sizing and 
Scheduling decisions

Plant design

Prod. planning

Prod. scheduling

Production
system

Storage capacity

Capacity planning

Storage scheduling

Storage
system

Network design

Transport planning

Vehicle routing

Transport
system

Integrating Lot-Sizing and Scheduling 
decisions

Strategic level

Production system

Tactical level

Operational level

Production Plan

Schedules

Decisions

Feedback

Information

Horizon, demands, 
capacity constraints, ...

Routings, processing
times, ...
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Integrating Lot-Sizing and Scheduling 
decisions

Planning and scheduling can hardly be treated simultaneously

When and How
(discrete variables)

How much
(continuous variables)

Scheduling

Production planning
(Lot Sizing)

Aggregate (necessary) capacity constraints are used
→ No actual schedule to satisfy the plan
→ Delays, work-in-process inventories

Integrating Lot-Sizing and Scheduling 
decisions

• Integration of production planning and detailed scheduling 
(Lasserre 1989, D-P. and Lasserre 1994 and 2002)

– Multi-item lot-sizing problem,
– Combined with job-shop scheduling problem.

• Scientific challenges:
– Multi-item lot-sizing problem with complex capacity 

constraints,
– Or job-shop scheduling problem where processing times are 

variables.
• Practical challenges (e.g. Renault and “25% rule” in 1996).
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Integrating Lot-Sizing and Scheduling 
decisions – A simple example

Two products A and B

Three machines M1, M2 and M3

Input
M1

pA,1 = 2 h/up

pB,1 = 3 h/up
M2

pA,2 = 1 h/up

pB,2 = 1 h/up
M3

pA,3 = 1 h/up

pB,3 = 2 h/up

Output

Length of a period: 60 h

Quantities to be produced: XA and XB

Integrating Lot-Sizing and Scheduling 
decisions – A simple example

Input
M1

pA,1 = 2 h/up

pB,1 = 3 h/up
M2

pA,2 = 1 h/up

pB,2 = 1 h/up
M3

pA,3 = 1 h/up

pB,3 = 2 h/up

Output

Machine constraints:
M1: 2 XA + 3 XB ≤ 60  
M2: XA + XB ≤ 60
M3: XA + 2 XB ≤ 60

→ XA = 10 and XB = 10 are feasible 
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Integrating Lot-Sizing and Scheduling 
decisions – A simple example

Schedule of the operations in classical planning (M.R.P.)

Time

Product A

Product B

10 20 30 40 50 60

M1

M1

M2

M2

M3

M3

→ Operations are not sequenced

Integrating Lot-Sizing and Scheduling 
decisions – A simple example

Product A sequenced before product B

Time

M3

M2

10 20 30 40 50 60

A

B

70 80

M1 B

B

A

A
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Integrating Lot-Sizing and Scheduling 
decisions – A simple example

Product B sequenced before product A

Time

M3

M2

10 20 30 40 50 60

A

B

70 80

M1 B

B

A

A

Integrating Lot-Sizing and Scheduling 
decisions

Planning (Lot-Sizing) problem

Scheduling problem
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Integrating Lot-Sizing and Scheduling 
decisions

• A two-level iterative procedure has been used to solve the 
problem (Lasserre 1989, D.-P. and Lasserre 1994, 2002, Roux, 
D.-P. and Lasserre 1999)
Comparison between feasible production plans obtained with aggregate 

model and integrated model with one-pass and iterative procedures

Problem
Total inventory and backlog costs

Aggregate One-pass Iterative
1 7538 5248 4347

2 17036 12638 12246
3 6318 3913 2651

4 2457 883 133
5 3318 482 220

6 698 0 0

Integrating Lot-Sizing and Scheduling 
decisions

• A two-level iterative procedure has been used to solve the 
problem (Lasserre 1989, D.-P. and Lasserre 1994, 2002, Roux, 
D.-P. and Lasserre 1999)

• More recently an integrated approach has been proposed in 
(Wolosewicz, D.-P. and Aggoune, 2008)
→ Pursued in PhD thesis of Edwin Gomez for multi-level lot-

sizing problems in a supply chain
• Novel formulation based on graph representation of 

scheduling problem, where each path corresponds to a 
capacity constraint.
→ Exponential number of capacity constraints
→ Lagrangian relaxation approach where violated paths 

are inserted one by one with positive Lagrangian multiplier
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Integrating Lot Sizing and Routing
Production Routing Problem (PRP)

• Integrated optimization of production, distribution and 
inventory decisions.

Plant design

Prod. planning

Prod. scheduling

Production
system

Storage capacity

Capacity planning

Storage scheduling

Storage
system

Network design

Transport planning

Vehicle routing

Transport
system

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)

• Integrated optimization of production, distribution and 
inventory decisions.

• The PRP simultaneously optimizes production, inventory and 
routing so that final demands of customers and inventory limits 
in production facility and retailers are satisfied, while 
minimizing all types of costs.



Synthèse sur les problèmes de lot sizing et perspectives

S. DAUZERE-PERES 41

• Decide when and how much to produce, when, how 
much and how to transport in order to satisfy customer 
demands over a discrete time horizon

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)

Literature review
• Few papers address the PRP.
• The problem of integrating production and routing decisions 

was introduced by (Chandra, 1993).
• Most authors used heuristic methods to solve the problem of 

integrating production planning and vehicle routing (Boudia et 
al., 2007), (Bard et al., 2009), (Adulyasak et al. 2012), (Absi et 
al., 2013).

• Very few authors used exact methods (Archetti et al., 2011).
• More authors addressed the Inventory Routing Problem (IRP), 

which does not consider production.

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)
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Mathematical model
• Minimize production, inventory and routing costs subject to:

– Inventory balance constraints for retailers and production facility,
– Inventory capacity constraints for retailers and production 

facility,
– Production constraints,
– Vehicle capacity constraints,
– Routing constraints.

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)

Solution approach (Absi, Archetti, Feillet and D.-P. 2012)
• Iterative two-phase approach.
• Routing costs incurred when visiting a customer at a given 

period are approximated and denoted SCit.
→ Initial model can then be transformed into a lot-sizing 

model that optimizes production and inventory levels.
• Distribution costs only interfere with the lot-sizing model 

through the setup costs SCit.
• First phase is called Lot-sizing Problem (SCit).
• Using the solution obtained in first phase, routing decisions are 

taken in second phase, called Routing Problem (γvit). 
→ Corresponds to solving the vehicle routing problem once 

the γvit variables are fixed.

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)
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Solution approach (general scheme)

Diversification mechanism: SCit multiplied by coefficient (route
length) when customer i belongs to existing route at period t.

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)

Lot-sizing phase
• Optimize production plan with approximated routing costs SCit

(setup costs),
• Decide when (γvit) and how much to produce, when and how 

much to transport in order to satisfy customer demands.

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)
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Routing phase
• Decide how to transport goods in order to satisfy customers 

and vehicles capacities (Vehicle Routing Problem).

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)

Computational experiments
• Stops after 20 iterations.
• When solution not improved for 5 iterations, diversification 

mechanism is used.
• Comparison with heuristics of (Archetti et al., 2011) (H) and 

(Adulyasak et al., 2012) (Op-ALNS).

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)
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Computational experiments

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)

Computational experiments

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)
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Computational results

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)

Classes IM H ALNS
1 0,13% 2,13% 1,65%
2 0,02% 0,30% 0,36%
3 0,71% 3,43% 7,60%
4 0,07% 0,88% 0,93%

All 0,23% 1,68% 2,64%

Average gaps to best 
solutions for 480 

instances of set A1.

Integrating Lot Sizing and Routing
Production Routing Problem (PRP)

Classes IM H ALNS
1 0,04% 1,89% 0,98%
2 0,02% 0,35% 0,14%
3 0,26% 2,66% 2,66%
4 0,04% 1,17% 0,13%

All 0,09% 1,52% 0,98%

Classes IM H ALNS
1 0,06% 2,06% 0,82%
2 0,19% 0,32% 0,29%
3 0,23% 2,55% 2,53%
4 0,18% 1,19% 0,26%

All 0,16% 1,53% 0,98%

Average gaps to best 
solutions for 480 

instances of set A2.

Average gaps to best 
solutions for 480 

instances of set A3.

Computational results



Synthèse sur les problèmes de lot sizing et perspectives

S. DAUZERE-PERES 47

Conclusions

• Lot sizing is (again…) an active field of research.
• Numerous topics were not discussed in this presentation such 

as: sequence-dependent setup times, joint setups, inventory 
bounds, stochastic lot sizing, various solution approaches 
(Column Generation, metaheuristics, …), …

• A lot of research remains to be done on the interface between 
lot sizing and other problems to define, in particular with 
industry, relevant combined problems. 


