Semidefinite relaxation of the DLSP with sequence-dependent changeover costs

Céline GICQUEL ¹, Abdel LISSER¹, Michel MINOUX ²

¹Laboratoire de Recherche en Informatique Université Paris Sud

²Laboratoire d'Informatique de Paris 6 Université Pierre et Marie Curie

IWLS 2012

A D F A A F F

Plan

- Problem presentation
- 2 State of the art
- Semidefinite programming
- 4 Semidefinite relaxation of the DLSPSD
- 5 Computational results
- 6 Conclusion and perspectives

Plan

- Problem presentation
 - 2 State of the art
- 3 Semidefinite programming
- 4 Semidefinite relaxation of the DLSPSD
 - 5 Computational results
- 6 Conclusion and perspectives

イロト イヨト イヨト イ

Problem description

Production system

- multiple products
- single-level
- single-resource

イロト イヨト イヨト イヨト

Problem description

Production system

- multiple products
- single-level
- single-resource

Discrete Lotsizing and Scheduling Problem - DLSP

- Planning horizon divided into short periods
- Small bucket problem: a single type of product produced per period
- Discrete production policy: all-or-nothing assumption
- Constant production capacity

< □ > < 同 > < 回 > < Ξ > < Ξ

Problem description

Production system

- multiple products
- single-level
- single-resource

Discrete Lotsizing and Scheduling Problem - DLSP

- Planning horizon divided into short periods
- Small bucket problem: a single type of product produced per period
- Discrete production policy: all-or-nothing assumption
- Constant production capacity

Complicating feature

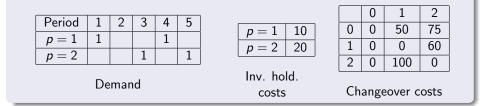
 $\begin{array}{l} \mathsf{Sequence-dependent\ changeover\ costs} \\ \to \mathsf{DLSPSD} \end{array}$

Illustrative example

Instance size

2 products, 5 time periods

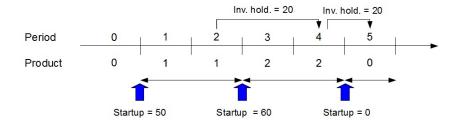
Instance data



<ロ> (日) (日) (日) (日) (日)

Illustrative example

Optimal production plan



 \rightarrow Total production cost = 150

・ロト ・回ト ・ヨト ・

Decision variables

 $y_{pt} = 1$ if product p is assigned to period t, 0 otherwise

イロト イヨト イヨト イヨト

Decision variables

 $y_{pt} = 1$ if product p is assigned to period t, 0 otherwise

Quadratic formulation

$$Z_{DLSP} = \min \sum_{p=1}^{P} \sum_{t=1}^{T} h_p \sum_{\tau=1}^{t} (y_{p\tau} - d_{p\tau}) + \sum_{p,q=0}^{P} S_{p,q} \sum_{t=0}^{T-1} \frac{y_{pt}y_{qt+1}}{y_{qt+1}}$$
(1)

$$\sum_{\tau=1}^{t} y_{p\tau} \ge \sum_{\tau=1}^{t} d_{p\tau}, \quad \forall p, \forall t$$
(2)

$$\sum_{n=0}^{P} y_{pt} = 1, \quad \forall t \tag{3}$$

ヘロン ヘロン ヘヨン ヘヨン

$$m{y}_{m{
ho}t} \in \{0,1\}, \;\; orall m{
ho}, orall t$$

(4)

QBP formulation

Decision variables

 $y_{pt} = 1$ if product p is assigned to period t, 0 otherwise

Quadratic formulation

$$Z_{DLSP} = \min \sum_{p=1}^{P} \sum_{t=1}^{T} h_p \sum_{\tau=1}^{t} (y_{p\tau} - d_{p\tau}) + \sum_{p,q=0}^{P} S_{p,q} \sum_{t=0}^{T-1} \frac{y_{pt}y_{qt+1}}{y_{qt+1}}$$
(1)

$$\sum_{\tau=1}^{t} y_{p\tau} \ge \sum_{\tau=1}^{t} d_{p\tau}, \quad \forall p, \forall t \qquad \text{Demand satisf.} \qquad (2$$

$$\sum_{p=0}^{p} y_{pt} = 1, \quad \forall t \tag{3}$$

<ロ> (四) (四) (注) (三) (三)

$$y_{oldsymbol{
hot} t} \in \{0,1\}, \hspace{0.2cm} orall oldsymbol{
ho}, orall t$$

(4)

Decision variables

 $y_{pt} = 1$ if product p is assigned to period t, 0 otherwise

Quadratic formulation

$$Z_{DLSP} = \min \sum_{p=1}^{P} \sum_{t=1}^{T} h_p \sum_{\tau=1}^{t} (y_{p\tau} - d_{p\tau}) + \sum_{p,q=0}^{P} S_{p,q} \sum_{t=0}^{T-1} \frac{y_{pt}y_{qt+1}}{y_{pt}y_{qt+1}}$$
(1)

$$\sum_{\tau=1}^{t} y_{p\tau} \geq \sum_{\tau=1}^{t} d_{p\tau}, \quad \forall p, \forall t \qquad \text{Demand satisf.} \qquad (2$$

$$\sum_{p=0}^{P} y_{pt} = 1, \quad \forall t \qquad \text{Ressou}$$

$$\mathbf{y}_{pt} \in \{0,1\}, \ \forall p, \forall t$$

urce cap.

$$y_{pt} \in \{0,1\}, \ \forall p, \forall t$$

(3)

(4)

Decision variables

 $y_{pt} = 1$ if product p is assigned to period t, 0 otherwise

Quadratic formulation

$$Z_{DLSP} = \min \sum_{p=1}^{P} \sum_{t=1}^{T} h_p \sum_{\tau=1}^{t} (y_{p\tau} - d_{p\tau}) + \sum_{p,q=0}^{P} S_{p,q} \sum_{t=0}^{T-1} y_{pt} y_{qt+1}$$
(1)
Inv. hold. costs

$$\sum_{\tau=1}^{t} y_{p\tau} \ge \sum_{\tau=1}^{t} d_{p\tau}, \quad \forall p, \forall t \quad \text{Demand satisf.}$$
(2)

$$\sum_{p=0}^{P} y_{pt} = 1, \quad \forall t \quad \text{Ressource cap.}$$
(3)

$$y_{pt} \in \{0,1\}, \quad \forall p, \forall t \quad$$
(4)

<ロ> (四) (四) (注) (三) (三)

Decision variables

 $y_{pt} = 1$ if product p is assigned to period t, 0 otherwise

Quadratic formulation

$$Z_{DLSP} = \min \sum_{p=1}^{P} \sum_{t=1}^{T} h_p \sum_{\tau=1}^{t} (y_{p\tau} - d_{p\tau}) + \sum_{p,q=0}^{P} S_{p,q} \sum_{t=0}^{T-1} y_{pt} y_{qt+1}$$
(1)
Inv. hold. costs

$$\sum_{\tau=1}^{P} y_{p\tau} \ge \sum_{\tau=1}^{T} d_{p\tau}, \quad \forall p, \forall t \quad \text{Demand satisf.}$$
(2)

$$\sum_{p=0}^{P} y_{pt} = 1, \quad \forall t \quad \text{Ressource cap.}$$
(3)

$$y_{pt} \in \{0,1\}, \quad \forall p, \forall t \quad$$
(4)

ヘロン ヘロン ヘヨン ヘヨン

Plan

Problem presentation

2 State of the art

- 3 Semidefinite programming
- 4 Semidefinite relaxation of the DLSPSD
 - 5 Computational results
 - 6 Conclusion and perspectives

・ロト ・日下・ ・ ヨト・

Litterature review on the DLSP

Complexity results

multi-item DLSP: NP-hard problem

[Brüggemann and Jahnke 2000]

<ロト <四ト < 回ト < 回 > < 回

Litterature review on the DLSP

Complexity results

multi-item DLSP: NP-hard problem

Existing solution approaches

- Problem-specific heuristics
- Exact algorithms based on Branch & Bound
 - Key ingredient: quality of the bounds used to evaluate the nodes
 - Bounds obtained by linear reformulation of the QBP

[Belvaux and Wolsey 2001], [Pochet and Wolsey 2006]

(日) (同) (三) (三) (三)

[Brüggemann and Jahnke 2000]

[Beraldi et al. 2008]

Litterature review on the DLSP

Complexity results

multi-item DLSP: NP-hard problem

Existing solution approaches

- Problem-specific heuristics
- Exact algorithms based on Branch & Bound
 - Key ingredient: quality of the bounds used to evaluate the nodes
 - Bounds obtained by linear reformulation of the QBP

[Belvaux and Wolsey 2001], [Pochet and Wolsey 2006]

イロト イ団ト イヨト イヨト

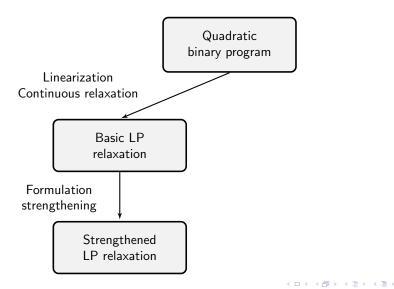
Our proposal

Compute bounds for the DLSPSD thanks to a semidefinite reformulation

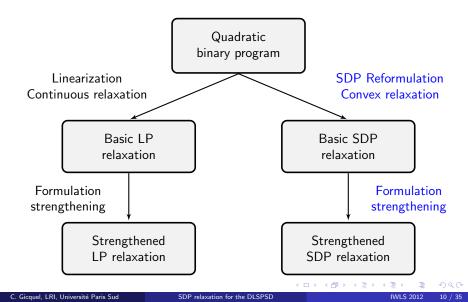
[Brüggemann and Jahnke 2000]

[Beraldi et al. 2008]

State of the art vs Proposed approach



State of the art vs Proposed approach



Plan

- Problem presentation
- 2 State of the art
- Semidefinite programming
- 4 Semidefinite relaxation of the DLSPSD
 - 5) Computational results
- 6 Conclusion and perspectives

イロト イヨト イヨト イ

Semidefinite programming

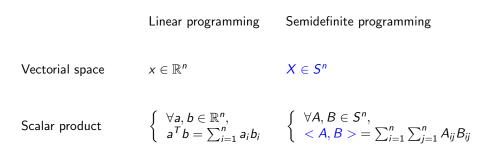
Linear programming Semidefinite programming

Vectorial space

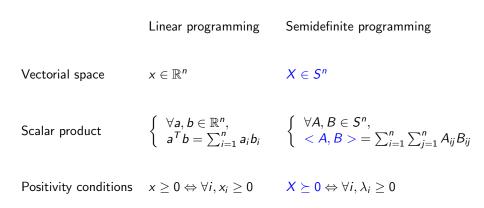
 $x \in \mathbb{R}^n$

 $X \in S^n$

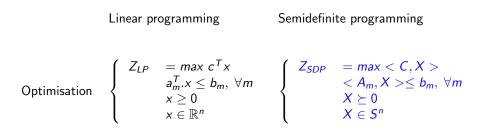
イロト イヨト イヨト イヨ



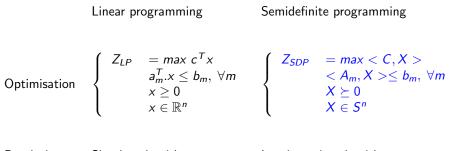
イロン イヨン イヨン イヨン



イロン イ団と イヨン イヨン



・ロト ・聞 ト ・ 臣 ト ・ 臣 ト …



Resolution Simplex algorithm Interior point algorithm Interior point algorithm Spectral bundle algorithm

・ロト ・個ト ・ヨト ・ヨト

Seminal papers

- Lower bounds for the maximum vertex packing problem [Lovasz and Schrijver 1991]
- Approximation alg. for the max cut problem [Goemans and Williamson 1995]

イロト イヨト イヨト イ

Seminal papers

- Lower bounds for the maximum vertex packing problem [Lovasz and Schrijver 1991]
- Approximation alg. for the max cut problem

[Goemans and Williamson 1995]

Use in quadratic programming	
 Graph problems 	[Helmberg and Rendl 1998]
 Generic quadratic binary problems 	
 Quadratic knapsack problem 	[Helmberg et al. 2000]
 Quadratic assignment problem 	[Zhao <i>et al.</i> 1998]
 Production management 	
 Scheduling 	[Skutella 1998]
Eacility layout	[lankovits et al. 2011]

Seminal papers

- Lower bounds for the maximum vertex packing problem [Lovasz and Schrijver 1991]
- Approximation alg. for the max cut problem

[Goemans and Williamson 1995]

Use in quadratic programming	
 Graph problems 	[Helmberg and Rendl 1998]
 Generic quadratic binary problems 	
 Quadratic knapsack problem 	[Helmberg et al. 2000]
 Quadratic assignment problem 	[Zhao <i>et al.</i> 1998]
 Production management 	
 Scheduling 	[Skutella 1998]
 Facility layout 	[Jankovits <i>et al.</i> 2011]

Solvers

- Primal-dual interior point algorithms: CSDP, DSDP, SeDuMi..
- Spectral bundle methods: SB...

Plan

- Problem presentation
- 2 State of the art
- 3 Semidefinite programming

4 Semidefinite relaxation of the DLSPSD

- 5) Computational results
- 6 Conclusion and perspectives

・ロト ・日下・ ・ ヨト・

Quadratic binary program

Detailed formulation

$$\begin{cases} Z_{DLSP} &= \min \sum_{p=1}^{P} \sum_{t=1}^{T} h_p \sum_{\tau=1}^{t} (y_{p\tau} - d_{p\tau}) + \sum_{p,q=0}^{P} S_{p,q} \sum_{t=0}^{T-1} y_{pt} y_{qt+1} \\ \sum_{\tau=1}^{t} y_{p\tau} \ge \sum_{\tau=1}^{t} d_{p\tau}, \quad \forall p, \forall t \\ \sum_{p=0}^{P} y_{pt} = 1, \quad \forall t \\ y_{pt} \in \{0,1\}, \quad \forall p, \forall t \end{cases}$$

イロト イヨト イヨト イヨ

Quadratic binary program

Detailed formulation

$$\begin{cases} Z_{DLSP} &= \min \sum_{p=1}^{P} \sum_{t=1}^{T} h_p \sum_{\tau=1}^{t} (y_{p\tau} - d_{p\tau}) + \sum_{p,q=0}^{P} S_{p,q} \sum_{t=0}^{T-1} y_{pt} y_{qt+1} \\ &\sum_{\tau=1}^{t} y_{p\tau} \ge \sum_{\tau=1}^{t} d_{p\tau}, \ \forall p, \forall t \\ &\sum_{p=0}^{P} y_{pt} = 1, \ \forall t \\ &y_{pt} \in \{0,1\}, \ \forall p, \forall t \end{cases}$$

Variable redefinition

 $x_{pT+t} = 1 - y_{pt} \quad \forall p, \forall t$ i.e. $x_{pT+t} = 1$ if we *do not* produce *p* in period *t*, 0 otherwise

<ロト <回ト < 回ト < 回ト

Quadratic binary program

Detailed formulation

$$\begin{array}{ll} Z_{DLSP} &= \min \sum_{p=1}^{P} \sum_{t=1}^{T} h_p \sum_{\tau=1}^{t} (y_{p\tau} - d_{p\tau}) + \sum_{p,q=0}^{P} S_{p,q} \sum_{t=0}^{T-1} y_{pt} y_{qt+1} \\ &\sum_{\tau=1}^{t} y_{p\tau} \geq \sum_{\tau=1}^{t} d_{p\tau}, \ \forall p, \forall t \\ &\sum_{p=0}^{P} y_{pt} = 1, \ \forall t \\ &y_{pt} \in \{0,1\}, \ \forall p, \forall t \end{array}$$

Variable redefinition

$$x_{pT+t} = 1 - y_{pt} \quad \forall p, \forall t$$

i.e. $x_{pT+t} = 1$ if we *do not* produce *p* in period *t*, 0 otherwise

Compact formulation

$$\begin{aligned} Z_{DLSP} &= \min c^T x + x^T \tilde{C} x \\ a_{pt}^T x \leq b_{pt} \quad \forall p, \forall t \\ e_t^T x = P \quad \forall t \\ x_i \in \{0,1\}, \quad \forall i = 1...n \end{aligned}$$

Quadratic objective function Knapsack constraints with pos. coeff. Equality constraints Binary constraints

SDP reformulation

Introduction of a matrix variable

		т	-	1	<i>x</i> ₁	<i>x</i> ₂	 x _n	
	1	x '	_	x_1	x_1^2	$x_1 x_2$	 x_1x_n	$\in S^{n+1}$
X =		т		x_1	$x_1 x_2$	x_{2}^{2}	 $x_1 x_2$	$\in S^{n+1}$
	X	XX '	İ	:				
I	_		J	Xn	$X_1 X_n$	$X_1 X_n$	 x_n^2	
X =	x	$\times \times^T$:			x_n^2	

イロト イヨト イヨト イヨ

Semidefinite relaxation of the DLSPSD

SDP reformulation: objective function

Reformulation of the objective function

min $c^T x + x^T \tilde{C} x$

<ロト </p>

Semidefinite relaxation of the DLSPSD

SDP reformulation: objective function

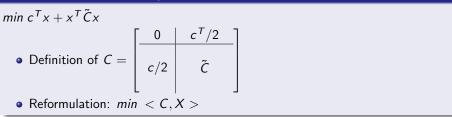
Reformulation of the objective function

 $min \ c^{T}x + x^{T} \tilde{C}x$ • Definition of $C = \begin{bmatrix} 0 & c^{T}/2 \\ c/2 & \tilde{C} \end{bmatrix}$

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

SDP reformulation: objective function

Reformulation of the objective function



・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

Semidefinite relaxation of the DLSPSD

SDP reformulation: binary constraints

Reformulation of the binary constraints

 $x\in\{0,1\}^n$

<ロト <四ト < 回ト < 回 > < 回

Reformulation of the binary constraints

 $x \in \{0, 1\}^n$

• $x_i \in \{0, 1\}, \forall i = 1...n \iff x_i^2 - x_i = 0, \forall i = 1...n$

(4日) (日) (日) (日) (日)

Reformulation of the binary constraints

 $x \in \{0, 1\}^n$

• $x_i \in \{0,1\}, \forall i = 1...n \iff x_i^2 - x_i = 0, \forall i = 1...n$

• Introduction of matrices $D_i =$

$$\begin{bmatrix} 0 & \dots & -0.5 & \dots \\ \vdots & & \\ -0.5 & 1 & \\ \vdots & & \\ \end{bmatrix}$$

イロト イ団ト イヨト イヨト

Reformulation of the binary constraints

 $x \in \{0, 1\}^n$

• $x_i \in \{0, 1\}, \forall i = 1...n \Leftrightarrow x_i^2 - x_i = 0, \forall i = 1...n$

• Introduction of matrices $D_i = \begin{bmatrix} 0 & \dots & -0.5 & \dots \\ \vdots & & & \\ -0.5 & 1 & & \\ \vdots & & & \\ \end{bmatrix}$

• Reformulation: $\langle D_i, X \rangle = 0, \forall i = 1...n$

イロン イ団と イヨン イヨン

Lifted representation of the knapsack constraints

Knapsack constraint $a^T x \leq b$

Lifted representation of the knapsack constraints

Knapsack constraint $a^T x \leq b$

• Pretreatment: multiplication by $a^T x$ of both sides of the inequality

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lifted representation of the knapsack constraints

Knapsack constraint $a^T x \leq b$

- Pretreatment: multiplication by $a^T x$ of both sides of the inequality
- Quadratic inequality: $-x^T a a^T x b a^T x \ge 0$

Lifted representation of the knapsack constraints

Knapsack constraint $a^T x \leq b$

- Pretreatment: multiplication by $a^T x$ of both sides of the inequality
- Quadratic inequality: $-x^T a a^T x b a^T x \ge 0$

$$\begin{bmatrix} 0 & ba^T/2 \\ ba/2 & -aa^T \end{bmatrix}$$

(日) (同) (三) (三)

Lifted representation of the knapsack constraints

Knapsack constraint $a^T x \leq b$

• Pretreatment: multiplication by $a^T x$ of both sides of the inequality

ba^T/2 -aa^T

• Quadratic inequality: $-x^T a a^T x - b a^T x \ge 0$

• Introduction of a matrix
$$A = \begin{bmatrix} 0 \\ ba/2 \end{bmatrix}$$

• Reformulation: $\langle A, X \rangle \geq 0$

[Helmberg 2000], [Roupin 2004]

イロト イヨト イヨト イヨト

Square representation of the equality constraints

Equality constraint $e^T x = P$

イロト イヨト イヨト イヨト

Square representation of the equality constraints

Equality constraint $e^T x = P$

• Pretreatment: squaring of both sides of the equality

Square representation of the equality constraints

Equality constraint $e^T x = P$

- Pretreatment: squaring of both sides of the equality
- Quadratic equality: $x^T e e^T x = P^2$

(日) (同) (日) (日)

Square representation of the equality constraints

Equality constraint $e^T x = P$

• Pretreatment: squaring of both sides of the equality

Γ0

• Quadratic equality: $x^T e e^T x = P^2$

Introduction of a matrix
$$E = \begin{bmatrix} - & - \\ 0 & 0 \end{bmatrix}$$

 ee^T

イロト イ団ト イヨト イヨト

Square representation of the equality constraints

Equality constraint $e^T x = P$

- Pretreatment: squaring of both sides of the equality
- Quadratic equality: $x^T e e^T x = P^2$

roduction of a matrix
$$E = \begin{bmatrix} 0 & 0 \\ 0 & ee^T \end{bmatrix}$$

• Reformulation: $\langle E, X \rangle = P^2$

[Helmberg 2000], [Roupin 2004]

(日) (同) (三) (三)

Intr

SDP reformulation

Quadratic binary program in \mathbb{R}^n

$$\begin{cases} Z_{DLSP} = \min c^{T}x + x^{T}\tilde{C}x \\ a_{pt}^{T}x \leq b_{pt} \quad \forall p, \forall t \\ e_{t}^{T}x = P \quad \forall t \\ x_{i} \in \{0, 1\}, \quad \forall i = 1...n \end{cases}$$

<ロト <四ト < 回ト < 回 > < 回

SDP reformulation

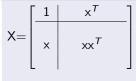
Quadratic binary program in \mathbb{R}^n $\begin{cases} Z_{DLSP} = \min c^T x + x^T \tilde{C} x \\ a_{pt}^T x \leq b_{pt} \quad \forall p, \forall t \\ e_t^T x = P \quad \forall t \\ x_i \in \{0,1\}, \quad \forall i = 1...n \end{cases}$

Re	Reformulation in S^{n+1}					
ſ	Z _{DLSP}	=min		/		
		$< A_{pt}, X \ge 0 \forall p, \forall t$				
		$\langle E_t, X \rangle = P^2 \forall t$				
Į		$\langle D_i, X \rangle = 0 \forall i = 1n$				
				X'		
		<i>X</i> =		_		
		<i>x</i> –	х	xx ^T		
l			L			

<ロト <回ト < 回ト < 回ト

 \Leftrightarrow

Convex relaxation



・ロン ・聞き ・ 国と ・ 国家

Convex relaxation

$$\mathsf{X} = \begin{bmatrix} 1 & \mathsf{x}^T \\ \\ \\ \mathsf{x} & \mathsf{x}\mathsf{x}^T \end{bmatrix} \Leftrightarrow \begin{cases} X_{11} = 1 \\ X \succeq 0 \\ rank(X) = 1 \end{cases}$$

・ロト ・回ト ・ヨト ・ヨ

Convex relaxation

$$\mathsf{X} = \begin{bmatrix} 1 & \mathsf{x}^{\mathsf{T}} \\ \\ \mathsf{x} & \mathsf{x}\mathsf{x}^{\mathsf{T}} \end{bmatrix} \Leftrightarrow \begin{cases} X_{11} = 1 \\ X \succeq 0 \\ rank(X) = 1 \end{cases} \Rightarrow \begin{cases} < D_0, X > = 1 \\ X \succeq 0 \\ rank(X) \ge 1 \end{cases}$$
[Helmberg 2000]

・ロト ・回ト ・ヨト ・ヨ

Convex relaxation

$$\mathsf{X} = \begin{bmatrix} 1 & \mathsf{x}^{\mathsf{T}} \\ \\ \mathsf{x} & \mathsf{x}\mathsf{x}^{\mathsf{T}} \end{bmatrix} \Leftrightarrow \begin{cases} X_{11} = 1 \\ X \succeq 0 \\ rank(X) = 1 \end{cases} \Rightarrow \begin{cases} < D_0, X > = 1 \\ X \succeq 0 \\ rank(X) \ge 1 \end{cases}$$
[Helmberg 2000]

Initial semidefinite relaxation

$$Z_{SDP0} = \min < C, X >$$

$$< A_{pt}, X > \ge 0 \quad \forall p, \forall t$$

$$< E_t, X > = P^2 \quad \forall t$$

$$< D_i, X > = 1 \quad \forall i = 1...n$$

$$< D_0, X > = 0$$

$$X \succeq 0$$

with $Z_{SDP0} \leq Z_{DSDP}$

イロト イヨト イヨト イヨト

Semidefinite relaxation of the DLSPSD

Strengthening of the SDP relaxation

Problem-specific valid inequalities

Valid inequalities for the single-product DSLP

[van Eijl and van Hoesel 1997]

イロト イヨト イヨト イ

Strengthening of the SDP relaxation

Problem-specific valid inequalities

Valid inequalities for the single-product DSLP

[van Eijl and van Hoesel 1997]

Generic valid inequalities

- Sherali-Adams reformulation of the knapsack constraints
- Binary exclusion between pairs of variables
- Positivity of matrix X coefficients

[Sherali and Adams 1990], [Helmberg 2000], [Roupin 2004]

(日) (同) (三) (三) (三)

Strengthening of the SDP relaxation

Problem-specific valid inequalities

Valid inequalities for the single-product DSLP

[van Eijl and van Hoesel 1997]

Generic valid inequalities

- Sherali-Adams reformulation of the knapsack constraints
- Binary exclusion between pairs of variables
- Positivity of matrix X coefficients

[Sherali and Adams 1990], [Helmberg 2000], [Roupin 2004]

SDP reformulation

Quadratic inequalities of the form $x^T \tilde{F} x + f^T x \leq g$

• Introduction of a matrix F =

$$= \left[\begin{array}{c|c} 0 & f'/2 \\ \hline f/2 & \tilde{F} \end{array} \right]$$

• Reformulation:
$$\langle F, X \rangle \leq g$$

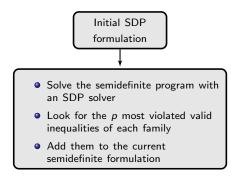
Semidefinite relaxation of the DLSPSD

Cutting plane generation

Initial SDP formulation

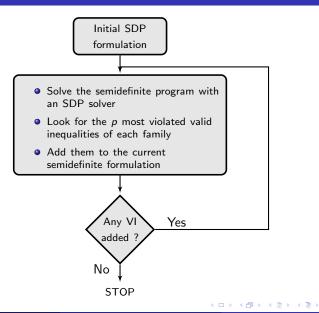
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Cutting plane generation



イロン イロン イヨン イヨン 三日 二

Cutting plane generation



Plan

- Problem presentation
- 2 State of the art
- 3 Semidefinite programming
- 4 Semidefinite relaxation of the DLSPSD
- 5 Computational results
 - 6 Conclusion and perspectives

・ロト ・日下・ ・ ヨト・

Computational experiments

Objective

Comparison between:

- the proposed semidefinite relaxation
- the tigthest linear relaxation previously published for the problem
 - linearization: flow-conservation constraints

[Belvaux and Wolsey 2001]

shortest-path extended reformulation

[Eppen and Martin 1987]

< ロ > < 同 > < 三 > < 三

Computational experiments

Objective

Comparison between:

- the proposed semidefinite relaxation
- the tigthest linear relaxation previously published for the problem
 - linearization: flow-conservation constraints

[Belvaux and Wolsey 2001]

shortest-path extended reformulation

[Eppen and Martin 1987]

Method

Computation:

- SDP formulation: DSDP 5.8
- LP/MILP formulation: CPLEX 12.1

イロト イ団ト イヨト イヨト

Instances

Instance generation

- 100 small instances: 4 to 6 products, 15 to 25 periods
- Capacity utilization: 95%
- Random generation following a procedure described in [Salomon et al, 1997]

イロン イ部ン イヨン イヨ

Instances

Instance generation

- 100 small instances: 4 to 6 products, 15 to 25 periods
- Capacity utilization: 95%
- Random generation following a procedure described in [Salomon et al, 1997]

Changeover cost structure: two classes of instances

General case

Special case: two product families

	0	1	2	3	4
0	0	50	75	80	30
1	0	0	60	20	100
2	0	100	0	10	50
3	0	20	70	0	90
4	0	30	60	75	0

	0	1	2	3	4
0	0	50	75	80	30
1	0	0	20	50	100
2	0	10	0	80	70
3	0	80	70	0	10
4	0	90	100	25	0

<ロト <四ト < 回ト < 回 > < 回

Results: general case

Problem size		Linear relaxation		Semidefinite relaxation	
N	Т	Gap _{LP}	Time _{LP}	Gap _{SDP}	Time _{SDP}
4	15	1.9%	0.1s	0.0%	42s
6	15	0.3%	0.1s	0.0%	86s
4	20	1.3%	0.2s	0.0%	151s
6	20	2.1%	0.2s	0.1%	644s
4	25	1.4%	0.2s	0.1%	713s

・ロト ・回ト ・ヨト ・ヨト

Results: product family case

Problem size		Linear relaxation		Semidefinite relaxation	
N	Т	Gap _{LP}	Time _{LP}	Gap _{SDP}	Time _{SDP}
4	15	11.2%	0.1s	0.0%	95s
6	15	4.2%	0.1s	0.0%	145s
4	20	7.2%	0.2s	0.0%	388s
6	20	7.5%	0.2s	0.0%	852s
4	25	7.2%	0.2s	0.2%	1196s

・ロト ・回ト ・ヨト ・ヨト

Improved lower bounds

- Average gap decreased:
 - general case: $1.4\% \rightarrow 0.04\%$
 - product family case: $9.5\% \rightarrow 0.04\%$
- Gap fully closed for 97% of the studied instances

< ロ > < 同 > < 三 > < 三

Improved lower bounds

- Average gap decreased:
 - general case: $1.4\% \rightarrow 0.04\%$
 - product family case: $9.5\% \rightarrow 0.04\%$
- Gap fully closed for 97% of the studied instances

Explanation

Reformulation as a semidefinite program:

<ロト <四ト < 回ト < 回 > < 回

Improved lower bounds

- Average gap decreased:
 - general case: $1.4\% \rightarrow 0.04\%$
 - product family case: 9.5%
 ightarrow 0.04%
- Gap fully closed for 97% of the studied instances

Explanation

Reformulation as a semidefinite program:

- Very large extended reformulation in $\mathbb{R}^{(n+1)(n+2)/2}$
 - LinearizationSDP reformulation $w_{pqt} = y_{pt}y_{q,t+1}$ $X_{ij} = x_{pt}x_{q,t'}$

イロト イヨト イヨト イヨト

Improved lower bounds

- Average gap decreased:
 - general case: $1.4\% \rightarrow 0.04\%$
 - product family case: 9.5%
 ightarrow 0.04%
- Gap fully closed for 97% of the studied instances

Explanation

Reformulation as a semidefinite program:

- Very large extended reformulation in $\mathbb{R}^{(n+1)(n+2)/2}$
 - LinearizationSDP reformulation $w_{pqt} = y_{pt}y_{q,t+1}$ $X_{ij} = x_{pt}x_{q,t'}$
- Inclusion of an infinite number of constraints

$$X \succeq 0 \Leftrightarrow \forall v \in \mathbb{R}^n, \ v^T X v \ge 0$$

イロト イヨト イヨト イヨト

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch & Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

• • • • • • • • • • • • •

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch & Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

Explanation

< ロ > < 同 > < 三 > < 三

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch & Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

Explanation

• Computational difficulty of solving a SDP

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch & Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

Explanation

- Computational difficulty of solving a SDP
- Research-based solvers with non-fully optimized BLAS routines

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch & Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

Explanation

- Computational difficulty of solving a SDP
- Research-based solvers with non-fully optimized BLAS routines
- Resolution of a sequence of SDPs without a warm-start strategy

Plan

- Problem presentation
- 2 State of the art
- 3 Semidefinite programming
- ④ Semidefinite relaxation of the DLSPSD
 - Computational results
- 6 Conclusion and perspectives

・ロト ・回ト ・ヨト ・

Conclusion and perspectives

Conclusion

- Problem studied: DLSP with sequence-dependent changeover cots
- Main results: very tight lower bounds by semidefinite relaxation
 - Quadratic binary formulation
 - Exploitation of known results for semidefinite relaxation of generic QBP
 - Combination with specific polyhedral results for the DLSP

Conclusion and perspectives

Conclusion

- Problem studied: DLSP with sequence-dependent changeover cots
- Main results: very tight lower bounds by semidefinite relaxation
 - Quadratic binary formulation
 - Exploitation of known results for semidefinite relaxation of generic QBP
 - Combination with specific polyhedral results for the DLSP

Perspectives

- Reduce computation times by implementing a warm-start strategy
- Extend the proposed appraoch to other variants of lot-sizing problems

Thank you for your attention !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶