Semidefinite relaxation of the DLSP with sequence-dependent changeover costs

Céline Gicquel ${ }^{1}$, Abdel Lisser ${ }^{1}$, Michel Minoux ${ }^{2}$
${ }^{1}$ Laboratoire de Recherche en Informatique
Université Paris Sud
${ }^{2}$ Laboratoire d'Informatique de Paris 6
Université Pierre et Marie Curie
IWLS 2012

UNIVERSITÉ
PARIS
SU

Plan

(1) Problem presentation
(2) State of the art
(3) Semidefinite programming
(4) Semidefinite relaxation of the DLSPSD
(5) Computational results
(6) Conclusion and perspectives

Plan

(1) Problem presentation
(2) State of the art
(3) Semidefinite programming

44 Semidefinite relaxation of the DLSPSD
(5) Computational results
(6) Conclusion and perspectives

Problem description

Production system

- multiple products
- single-level
- single-resource

Problem description

Production system

- multiple products
- single-level
- single-resource

Discrete Lotsizing and Scheduling Problem - DLSP

- Planning horizon divided into short periods
- Small bucket problem: a single type of product produced per period
- Discrete production policy: all-or-nothing assumption
- Constant production capacity

Problem description

Production system

- multiple products
- single-level
- single-resource

Discrete Lotsizing and Scheduling Problem - DLSP

- Planning horizon divided into short periods
- Small bucket problem: a single type of product produced per period
- Discrete production policy: all-or-nothing assumption
- Constant production capacity

Complicating feature

Sequence-dependent changeover costs
\rightarrow DLSPSD

Illustrative example

Instance size

2 products, 5 time periods

Instance data

Period	1	2	3	4	5
$p=1$	1			1	
$p=2$			1		1

Demand

$p=1$	10
$p=2$	20

Inv. hold. costs

	0	1	2
0	0	50	75
1	0	0	60
2	0	100	0

Changeover costs

Illustrative example

Optimal production plan

\rightarrow Total production cost $=150$

QBP formulation

Decision variables

$y_{p t}=1$ if product p is assigned to period $t, 0$ otherwise

QBP formulation

Decision variables

$y_{p t}=1$ if product p is assigned to period $t, 0$ otherwise
Quadratic formulation

$$
\begin{gather*}
Z_{D L S P}=\min \sum_{p=1}^{P} \sum_{t=1}^{T} h_{p} \sum_{\tau=1}^{t}\left(y_{p \tau}-d_{p \tau}\right)+\sum_{p, q=0}^{P} S_{p, q} \sum_{t=0}^{T-1} y_{p t} y_{q t+1} \tag{1}\\
\sum_{\tau=1}^{t} y_{p \tau} \geq \sum_{\tau=1}^{t} d_{p \tau}, \forall p, \forall t \tag{2}\\
\sum_{p=0}^{P} y_{p t}=1, \quad \forall t \tag{3}\\
y_{p t} \in\{0,1\}, \quad \forall p, \forall t \tag{4}
\end{gather*}
$$

QBP formulation

Decision variables

$y_{p t}=1$ if product p is assigned to period $t, 0$ otherwise
Quadratic formulation

$$
\begin{gather*}
Z_{D L S P}=\min \sum_{p=1}^{P} \sum_{t=1}^{T} h_{p} \sum_{\tau=1}^{t}\left(y_{p \tau}-d_{p \tau}\right)+\sum_{p, q=0}^{P} S_{p, q} \sum_{t=0}^{T-1} y_{p t} y_{q t+1} \tag{1}\\
\sum_{\tau=1}^{t} y_{p \tau} \geq \sum_{\tau=1}^{t} d_{p \tau}, \forall p, \forall t \quad \text { Demand satisf. } \tag{2}\\
\sum_{p=0}^{P} y_{p t}=1, \forall t \tag{3}\\
y_{p t} \in\{0,1\}, \forall p, \forall t \tag{4}
\end{gather*}
$$

QBP formulation

Decision variables

$y_{p t}=1$ if product p is assigned to period $t, 0$ otherwise
Quadratic formulation

$$
\begin{gather*}
Z_{D L S P}=\min \sum_{p=1}^{P} \sum_{t=1}^{T} h_{p} \sum_{\tau=1}^{t}\left(y_{p \tau}-d_{p \tau}\right)+\sum_{p, q=0}^{P} S_{p, q} \sum_{t=0}^{T-1} y_{p t} y_{q t+1} \tag{1}\\
\sum_{\tau=1}^{t} y_{p \tau} \geq \sum_{\tau=1}^{t} d_{p \tau}, \forall p, \forall t \quad \text { Demand satisf. } \tag{2}\\
\sum_{p=0}^{P} y_{p t}=1, \forall t \quad \text { Ressource cap. } \tag{3}\\
y_{p t} \in\{0,1\}, \forall p, \forall t \tag{4}
\end{gather*}
$$

QBP formulation

Decision variables

$y_{p t}=1$ if product p is assigned to period $t, 0$ otherwise
Quadratic formulation

$$
\begin{gather*}
Z_{D L S P}=\min \sum_{p=1}^{P} \sum_{t=1}^{T} h_{p} \sum_{\tau=1}^{t}\left(y_{p \tau}-d_{p \tau}\right)+\sum_{p, q=0}^{P} S_{p, q} \sum_{t=0}^{T-1} y_{p t} y_{q t+1} \tag{1}\\
\sum_{\tau=1}^{\text {Inv. hold. costs }} \sum_{p \tau} \geq \sum_{\tau=1}^{t} d_{p \tau}, \forall p, \forall t \quad \text { Demand satisf. } \\
\sum_{p=0}^{P} y_{p t}=1, \forall t \quad \text { Ressource cap. } \tag{2}\\
y_{p t} \in\{0,1\}, \forall p, \forall t \tag{3}
\end{gather*}
$$

QBP formulation

Decision variables

$y_{p t}=1$ if product p is assigned to period $t, 0$ otherwise
Quadratic formulation

$$
\begin{gather*}
Z_{D L S P}=\min \sum_{p=1}^{P} \sum_{t=1}^{T} h_{p} \sum_{\tau=1}^{t}\left(y_{p \tau}-d_{p \tau}\right)+\sum_{p, q=0}^{P} S_{p, q} \sum_{t=0}^{T-1} y_{p t} y_{q t+1} \tag{1}\\
\text { Inv. hold. costs } \\
\sum_{\tau=1}^{t} y_{p \tau} \geq \sum_{\tau=1}^{t} d_{p \tau}, \quad \forall p, \forall t \quad \text { Changeover costs } \tag{2}\\
\sum_{p=0}^{P} y_{p t}=1, \forall t \quad \text { Demand satisf. } \tag{3}\\
y_{p t} \in\{0,1\}, \forall p, \forall t \tag{4}
\end{gather*}
$$

Plan

(1) Problem presentation

(2) State of the art
(3) Semidefinite programming
4. Semidefinite relaxation of the DLSPSD
(5) Computational results

6 Conclusion and perspectives

Litterature review on the DLSP

Complexity results

multi-item DLSP: NP-hard problem
[Brüggemann and Jahnke 2000]

Litterature review on the DLSP

Complexity results

multi-item DLSP: NP-hard problem

Existing solution approaches

- Problem-specific heuristics
- Exact algorithms based on Branch \& Bound
- Key ingredient: quality of the bounds used to evaluate the nodes
- Bounds obtained by linear reformulation of the QBP
[Belvaux and Wolsey 2001],[Pochet and Wolsey 2006]

Litterature review on the DLSP

Complexity results

multi-item DLSP: NP-hard problem

Existing solution approaches

- Problem-specific heuristics
- Exact algorithms based on Branch \& Bound
- Key ingredient: quality of the bounds used to evaluate the nodes
- Bounds obtained by linear reformulation of the QBP
[Belvaux and Wolsey 2001],[Pochet and Wolsey 2006]

Our proposal

Compute bounds for the DLSPSD thanks to a semidefinite reformulation

State of the art vs Proposed approach

State of the art vs Proposed approach

Plan

(1) Problem presentation

(2) State of the art
(3) Semidefinite programming
4. Semidefinite relaxation of the DLSPSD
(5) Computational results
(6) Conclusion and perspectives

Semidefinite programming

Linear programming Semidefinite programming

Vectorial space $\quad x \in \mathbb{R}^{n} \quad X \in S^{n}$

Semidefinite programming

Linear programming
Semidefinite programming

Vectorial space $x \in \mathbb{R}^{n}$ $X \in S^{n}$

Scalar product
$\left\{\begin{array}{l}\forall a, b \in \mathbb{R}^{n}, \\ a^{T} b=\sum_{i=1}^{n} a_{i} b_{i}\end{array}\right.$
$\left\{\begin{array}{l}\forall A, B \in S^{n}, \\ <A, B>=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} B_{i j}\end{array}\right.$

Semidefinite programming

Linear programming

Vectorial space $x \in \mathbb{R}^{n}$

Scalar product

$$
\left\{\begin{array}{l}
\forall a, b \in \mathbb{R}^{n}, \\
a^{T} b=\sum_{i=1}^{n} a_{i} b_{i}
\end{array}\right.
$$

Positivity conditions $\quad x \geq 0 \Leftrightarrow \forall i, x_{i} \geq 0$
$X \in S^{n}$
Semidefinite programming

$$
\left\{\begin{array}{l}
\forall A, B \in S^{n}, \\
<A, B>=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} B_{i j}
\end{array}\right.
$$

$X \succeq 0 \Leftrightarrow \forall i, \lambda_{i} \geq 0$

Semidefinite programming

Linear programming

Optimisation $\left\{\begin{array}{ll}Z_{L P} & =\max c^{T} x \\ & a_{m}^{T} \cdot x \leq b_{m}, \forall m \\ & x \geq 0 \\ & x \in \mathbb{R}^{n}\end{array} \quad \begin{cases}Z_{S D P} & =\max <C, X> \\ & <A_{m}, X>\leq b_{m}, \forall m \\ & X \succeq 0 \\ & X \in S^{n}\end{cases}\right.$

Semidefinite programming

Linear programming

Optimisation $\left\{\begin{array}{ll}Z_{L P} & =\max c^{T} x \\ & a_{m}^{T} \cdot x \leq b_{m} \\ & x \geq 0 \\ & x \in \mathbb{R}^{n}\end{array}, \forall m \quad \begin{cases}Z_{S D P} & =\max <C, X> \\ & <A_{m}, X>\leq b_{m}, \forall m \\ & X \succeq 0 \\ & X \in S^{n}\end{cases}\right.$

Resolution
Simplex algorithm Interior point algorithm

Semidefinite programming

$$
\left\{\begin{aligned}
Z_{S D P} & =\max <C, X> \\
& <A_{m}, X>\leq b_{m}, \forall m \\
& X \succeq 0 \\
& X \in S^{n}
\end{aligned}\right.
$$

Interior point algorithm
Spectral bundle algorithm

State of the art

Seminal papers

- Lower bounds for the maximum vertex packing problem [Lovasz and Schrijver 1991] - Approximation alg. for the max cut problem

State of the art

Seminal papers

- Lower bounds for the maximum vertex packing problem [Lovasz and Schrijver 1991]
- Approximation alg. for the max cut problem
[Goemans and Williamson 1995]

Use in quadratic programming

- Graph problems
[Helmberg and Rendl 1998]
- Generic quadratic binary problems
- Quadratic knapsack problem
- Quadratic assignment problem
- Production management
- Scheduling
[Skutella 1998]
- Facility layout

State of the art

Seminal papers

- Lower bounds for the maximum vertex packing problem [Lovasz and Schrijver 1991]
- Approximation alg. for the max cut problem
[Goemans and Williamson 1995]

Use in quadratic programming

- Graph problems
- Generic quadratic binary problems
- Quadratic knapsack problem
- Quadratic assignment problem
[Helmberg and Rendl 1998]
[Helmberg et al. 2000]
[Zhao et al. 1998]
- Production management
- Scheduling
[Skutella 1998]
- Facility layout

Solvers

- Primal-dual interior point algorithms: CSDP, DSDP, SeDuMi..
- Spectral bundle methods: SB...

Plan

(1) Problem presentation

(2) State of the art
(3) Semidefinite programming

4 Semidefinite relaxation of the DLSPSD
(5) Computational results
(6) Conclusion and perspectives

Quadratic binary program

Detailed formulation

$$
\left\{\begin{aligned}
Z_{D L S P} & =\min \sum_{p=1}^{P} \sum_{t=1}^{T} h_{p} \sum_{\tau=1}^{t}\left(y_{p \tau}-d_{p \tau}\right)+\sum_{p, q=0}^{P} S_{p, q} \sum_{t=0}^{T-1} y_{p t} y_{q t+1} \\
& \sum_{\tau=1}^{t} y_{p \tau} \geq \sum_{\tau=1}^{t} d_{p \tau}, \forall p, \forall t \\
& \sum_{p=0}^{P} y_{p t}=1, \forall t \\
& y_{p t} \in\{0,1\}, \forall p, \forall t
\end{aligned}\right.
$$

Quadratic binary program

Detailed formulation

$$
\left\{\begin{aligned}
Z_{D L S P} & =\min \sum_{p=1}^{P} \sum_{t=1}^{T} h_{p} \sum_{\tau=1}^{t}\left(y_{p \tau}-d_{p \tau}\right)+\sum_{p, q=0}^{P} S_{p, q} \sum_{t=0}^{T-1} y_{p t} y_{q t+1} \\
& \sum_{\tau=1}^{t} y_{p \tau} \geq \sum_{\tau=1}^{t} d_{p \tau}, \forall p, \forall t \\
& \sum_{p=0}^{P} y_{p t}=1, \forall t \\
& y_{p t} \in\{0,1\}, \forall p, \forall t
\end{aligned}\right.
$$

Variable redefinition

$x_{p T+t}=1-y_{p t} \forall p, \forall t$
i.e. $x_{p T+t}=1$ if we do not produce p in period $t, 0$ otherwise

Quadratic binary program

$$
\begin{aligned}
& \text { Detailed formulation } \\
& \left\{\begin{aligned}
Z_{D L S P} \quad & =\min \sum_{p=1}^{P} \sum_{t=1}^{T} h_{p} \sum_{\tau=1}^{t}\left(y_{p \tau}-d_{p \tau}\right)+\sum_{p, q=0}^{P} S_{p, q} \sum_{t=0}^{T-1} y_{p t} y_{q t+1} \\
& \sum_{\tau=1}^{t} y_{p \tau} \geq \sum_{\tau=1}^{t} d_{p \tau}, \forall p, \forall t \\
& \sum_{p=0}^{P} y_{p t}=1, \forall t \\
& y_{p t} \in\{0,1\}, \quad \forall p, \forall t
\end{aligned}\right.
\end{aligned}
$$

Variable redefinition

$x_{p T+t}=1-y_{p t} \forall p, \forall t$
i.e. $x_{p T+t}=1$ if we do not produce p in period $t, 0$ otherwise

Compact formulation

$$
\left\{\begin{aligned}
Z_{D L S P} & =\min c^{T} x+x^{T} \tilde{C} x \\
& a_{p t}^{T} x \leq b_{p t} \forall p, \forall t \\
& e_{t}^{T} x=P \forall t \\
& x_{i} \in\{0,1\}, \quad \forall i=1 \ldots n
\end{aligned}\right.
$$

Quadratic objective function
Knapsack constraints with pos. coeff.
Equality constraints
Binary constraints

SDP reformulation

Introduction of a matrix variable

$X=\left[\begin{array}{c|c}1 & x^{T} \\ \hline x & \mathrm{xx}^{T}\end{array}\right]=\left[\begin{array}{c|cccc}1 & x_{1} & x_{2} & \ldots & x_{n} \\ \hline x_{1} & x_{1}^{2} & x_{1} x_{2} & \ldots & x_{1} x_{n} \\ x_{1} & x_{1} x_{2} & x_{2}^{2} & \ldots & x_{1} x_{2} \\ \vdots & & & & \\ x_{n} & x_{1} x_{n} & x_{1} x_{n} & \ldots & x_{n}^{2}\end{array}\right] \in S^{n+1}$

SDP reformulation: objective function

Reformulation of the objective function

 $\min c^{\top} x+x^{\top} \tilde{C} x$
SDP reformulation: objective function

Reformulation of the objective function

 $\min c^{\top} x+x^{T} \tilde{C} x$- Definition of $C=\left[\begin{array}{c|c}0 & c^{T} / 2 \\ \hline c / 2 & \tilde{C}\end{array}\right]$

SDP reformulation: objective function

Reformulation of the objective function

 $\min c^{\top} x+x^{\top} \tilde{C} x$- Definition of $C=\left[\begin{array}{c|c}0 & c^{\top} / 2 \\ \hline c / 2 & \tilde{C}\end{array}\right]$
- Reformulation: $\min \langle C, X\rangle$

SDP reformulation: binary constraints

Reformulation of the binary constraints

 $x \in\{0,1\}^{n}$
SDP reformulation: binary constraints

Reformulation of the binary constraints

$$
\begin{aligned}
x & \in\{0,1\}^{n} \\
& \bullet \\
\quad & x_{i} \in\{0,1\}, \forall i=1 \ldots n \quad \Leftrightarrow \quad x_{i}^{2}-x_{i}=0, \forall i=1 \ldots n
\end{aligned}
$$

SDP reformulation: binary constraints

Reformulation of the binary constraints

```
x\in{0,1}n
```

- $x_{i} \in\{0,1\}, \forall i=1 \ldots n \quad \Leftrightarrow \quad x_{i}^{2}-x_{i}=0, \forall i=1 \ldots n$
- Introduction of matrices $D_{i}=\left[\begin{array}{c|c}\vdots & \\ -0.5 & 1 \\ \vdots & \end{array}\right]$

SDP reformulation: binary constraints

Reformulation of the binary constraints

```
x\in{0,1}n
```

- $x_{i} \in\{0,1\}, \forall i=1 \ldots n \Leftrightarrow x_{i}^{2}-x_{i}=0, \forall i=1 \ldots n$
- Introduction of matrices $D_{i}=$
$\left[\begin{array}{c|ccc}0 & \ldots & -0.5 & \ldots \\ \hline \vdots & & & \\ -0.5 & & 1 & \\ \vdots & & & \end{array}\right]$
- Reformulation: $\left\langle D_{i}, X>=0, \forall i=1 \ldots n\right.$

SDP reformulation: linear constraints

Lifted representation of the knapsack constraints

Knapsack constraint $a^{T} x \leq b$

SDP reformulation: linear constraints

Lifted representation of the knapsack constraints

Knapsack constraint $a^{T} x \leq b$

- Pretreatment: multiplication by $a^{T} x$ of both sides of the inequality

SDP reformulation: linear constraints

Lifted representation of the knapsack constraints

Knapsack constraint $a^{T} x \leq b$

- Pretreatment: multiplication by $a^{T} x$ of both sides of the inequality
- Quadratic inequality: $-x^{T} a a^{T} x-b a^{T} x \geq 0$

SDP reformulation: linear constraints

Lifted representation of the knapsack constraints

Knapsack constraint $a^{T} x \leq b$

- Pretreatment: multiplication by $a^{T} x$ of both sides of the inequality
- Quadratic inequality: $-x^{T} a a^{T} x-b a^{T} x \geq 0$
- Introduction of a matrix $A=$
$\left[\begin{array}{c|c}0 & \mathrm{ba}{ }^{T} / 2 \\ \hline \mathrm{ba} / 2 & -\mathrm{aa}^{T}\end{array}\right]$

SDP reformulation: linear constraints

Lifted representation of the knapsack constraints

Knapsack constraint $a^{T} x \leq b$

- Pretreatment: multiplication by $a^{T} x$ of both sides of the inequality
- Quadratic inequality: $-x^{T} a a^{T} x-b a^{T} x \geq 0$
- Introduction of a matrix $A=$
$\left[\begin{array}{c|c}0 & \mathrm{ba}^{T} / 2 \\ \hline \mathrm{ba} / 2 & -\mathrm{aa}^{T}\end{array}\right]$
- Reformulation: $<A, X>\geq 0$
[Helmberg 2000], [Roupin 2004]

SDP reformulation: linear constraints

Square representation of the equality constraints

Equality constraint $e^{T} x=P$

SDP reformulation: linear constraints

Square representation of the equality constraints

Equality constraint $e^{T} x=P$

- Pretreatment: squaring of both sides of the equality

SDP reformulation: linear constraints

Square representation of the equality constraints

Equality constraint $e^{T} x=P$

- Pretreatment: squaring of both sides of the equality
- Quadratic equality: $x^{T} e e^{T} x=P^{2}$

SDP reformulation: linear constraints

Square representation of the equality constraints

Equality constraint $e^{T} x=P$

- Pretreatment: squaring of both sides of the equality
- Quadratic equality: $x^{T} e e^{T} x=P^{2}$
- Introduction of a matrix $E=$
$\left[\begin{array}{c|c}0 & 0 \\ \hline 0 & \mathrm{ee}^{T}\end{array}\right]$

SDP reformulation: linear constraints

Square representation of the equality constraints

Equality constraint $e^{T} x=P$

- Pretreatment: squaring of both sides of the equality
- Quadratic equality: $x^{T} e e^{T} x=P^{2}$
- Introduction of a matrix $E=$
$\left[\begin{array}{c|c}0 & 0 \\ \hline 0 & \mathrm{ee}^{T}\end{array}\right]$
- Reformulation: $<E, X>=P^{2}$
[Helmberg 2000], [Roupin 2004]

SDP reformulation

Quadratic binary program in \mathbb{R}^{n}

$$
\left\{\begin{aligned}
Z_{D L S P} & =\min c^{T} x+x^{T} \tilde{C} x \\
& a_{p t}^{T} x \leq b_{p t} \forall p, \forall t \\
& e_{t}^{T} x=P \forall t \\
& x_{i} \in\{0,1\}, \forall i=1 \ldots n
\end{aligned}\right.
$$

SDP reformulation

Reformulation in S^{n+1}

Quadratic binary program in \mathbb{R}^{n}

$$
\left\{\begin{aligned}
Z_{D L S P} & =\min c^{T} x+x^{T} \tilde{C} x \\
& a_{p t}^{T} x \leq b_{p t} \forall p, \forall t \\
& e_{t}^{T} x=P \forall t \\
& x_{i} \in\{0,1\}, \forall i=1 \ldots n
\end{aligned}\right.
$$

$\Leftrightarrow\left\{\begin{aligned} Z_{D L S P} & =\min <C, X> \\ & <A_{p t}, X>\geq 0 \forall p, \forall t \\ & <E_{t}, X>=P^{2} \forall t \\ & <D_{i}, X>=0 \forall i=1 \ldots n \\ & \\ & X=\left[\begin{array}{l|l}1 & x^{T} \\ \hline & \\ & \end{array}\right]\end{aligned}\right.$

Semidefinite relaxation

Convex relaxation

$x=\left[\begin{array}{c|c}1 & x^{\top} \\ \hline x & x x^{\top}\end{array}\right]$

Semidefinite relaxation

Convex relaxation

$\mathrm{X}=\left[\begin{array}{l|l}1 & \mathrm{x}^{T} \\ \hline \mathrm{x} & \mathrm{xx}\end{array}\right] \Leftrightarrow\left\{\begin{array}{l}X_{11}=1 \\ X \succeq 0 \\ \operatorname{rank}(X)=1\end{array}\right.$

Semidefinite relaxation

Convex relaxation

$\mathrm{X}=\left[\begin{array}{c|c}1 & \mathrm{x}^{T} \\ \hline \mathrm{x} & \mathrm{xx}^{T}\end{array}\right] \Leftrightarrow\left\{\begin{array}{l}X_{11}=1 \\ X \succeq 0 \\ \operatorname{rank}(X)=1\end{array} \Rightarrow\left\{\begin{array}{l}<D_{0}, X>=1 \\ X \succeq 0 \\ \operatorname{rank}(X) \geq 1\end{array}\right.\right.$

Semidefinite relaxation

Convex relaxation

$\mathrm{X}=\left[\begin{array}{c|c}1 & \mathrm{x}^{T} \\ \hline \mathrm{x} & \mathrm{xx}^{T}\end{array}\right] \Leftrightarrow\left\{\begin{array}{l}X_{11}=1 \\ X \succeq 0 \\ \operatorname{rank}(X)=1\end{array} \Rightarrow\left\{\begin{array}{l}<D_{0}, X>=1 \\ X \succeq 0 \\ \operatorname{rank}(X) \geq 1\end{array}\right.\right.$
[Helmberg 2000]
Initial semidefinite relaxation

$$
\begin{aligned}
& \left\{\begin{aligned}
Z_{S D P 0} & =\min <C, X> \\
& <A_{p t}, X>\geq 0 \forall p, \forall t \\
& <E_{t}, X>=P^{2} \forall t \\
& <D_{i}, X>=1 \forall i=1 \ldots n \\
& <D_{0}, X>=0 \\
& X \succeq 0 \\
\text { with } Z_{S D P 0} & \leq Z_{D S D P}
\end{aligned}\right.
\end{aligned}
$$

Strengthening of the SDP relaxation

Problem-specific valid inequalities

Valid inequalities for the single-product DSLP

Strengthening of the SDP relaxation

Problem-specific valid inequalities

Valid inequalities for the single-product DSLP
[van Eijl and van Hoesel 1997]

Generic valid inequalities

- Sherali-Adams reformulation of the knapsack constraints
- Binary exclusion between pairs of variables
- Positivity of matrix X coefficients
[Sherali and Adams 1990],[Helmberg 2000],[Roupin 2004]

Strengthening of the SDP relaxation

Problem-specific valid inequalities

Valid inequalities for the single-product DSLP
[van Eijl and van Hoesel 1997]

Generic valid inequalities

- Sherali-Adams reformulation of the knapsack constraints
- Binary exclusion between pairs of variables
- Positivity of matrix X coefficients
[Sherali and Adams 1990],[Helmberg 2000],[Roupin 2004]

SDP reformulation

Quadratic inequalities of the form $x^{\top} \tilde{F}_{x}+f^{T} x \leq g$

- Introduction of a matrix $F=\left[\begin{array}{c|c}0 & f^{T} / 2 \\ \hline f / 2 & \tilde{F}\end{array}\right]$
- Reformulation: $<F, X>\leq g$

Cutting plane generation

> Initial SDP
> formulation

Cutting plane generation

Initial SDP
 formulation

- Solve the semidefinite program with an SDP solver
- Look for the p most violated valid inequalities of each family
- Add them to the current semidefinite formulation

Cutting plane generation

Initial SDP
 formulation

- Solve the semidefinite program with an SDP solver
- Look for the p most violated valid inequalities of each family
- Add them to the current semidefinite formulation

STOP

Plan

(1) Problem presentation

(2) State of the art
(3) Semidefinite programming
4. Semidefinite relaxation of the DLSPSD
(5) Computational results
(6) Conclusion and perspectives

Computational experiments

Objective

Comparison between:

- the proposed semidefinite relaxation
- the tigthest linear relaxation previously published for the problem
- linearization: flow-conservation constraints
[Belvaux and Wolsey 2001]
- shortest-path extended reformulation [Eppen and Martin 1987]

Computational experiments

Objective

Comparison between:

- the proposed semidefinite relaxation
- the tigthest linear relaxation previously published for the problem
- linearization: flow-conservation constraints [Belvaux and Wolsey 2001]
- shortest-path extended reformulation

Method

Computation:

- SDP formulation: DSDP 5.8
- LP/MILP formulation: CPLEX 12.1

Instances

Instance generation

- 100 small instances: 4 to 6 products, 15 to 25 periods
- Capacity utilization: 95%
- Random generation following a procedure described in [Salomon et al, 1997]

Instances

Instance generation

- 100 small instances: 4 to 6 products, 15 to 25 periods
- Capacity utilization: 95%
- Random generation following a procedure described in [Salomon et al, 1997]

Changeover cost structure: two classes of instances

General case

	0	1	2	3	4
0	0	50	75	80	30
1	0	0	60	20	100
2	0	100	0	10	50
3	0	20	70	0	90
4	0	30	60	75	0

Special case: two product families

	0	1	2	3	4
0	0	50	75	80	30
1	0	0	20	50	100
2	0	10	0	80	70
3	0	80	70	0	10
4	0	90	100	25	0

Results: general case

Problem size		Linear relaxation		Semidefinite relaxation	
N	T	Gap $_{L P}$	Time $_{L P}$	Gap $_{S D P}$	Time $_{\text {SDP }}$
4	15	1.9%	0.1 s	0.0%	42 s
6	15	0.3%	0.1 s	0.0%	86 s
4	20	1.3%	0.2 s	0.0%	151 s
6	20	2.1%	0.2 s	0.1%	644 s
4	25	1.4%	0.2 s	0.1%	713 s

Results: product family case

Problem size		Linear relaxation		Semidefinite relaxation	
N	T	Gap $_{L P}$	Time $_{L P}$	Gap $_{S D P}$	Time $_{\text {SDP }}$
4	15	11.2%	0.1 s	0.0%	95 s
6	15	4.2%	0.1 s	0.0%	145 s
4	20	7.2%	0.2 s	0.0%	388 s
6	20	7.5%	0.2 s	0.0%	852 s
4	25	7.2%	0.2 s	0.2%	1196 s

Results: comments

Improved lower bounds

- Average gap decreased:
- general case: $1.4 \% \rightarrow 0.04 \%$
- product family case: $9.5 \% \rightarrow 0.04 \%$
- Gap fully closed for 97% of the studied instances

Results: comments

Improved lower bounds

- Average gap decreased:
- general case: $1.4 \% \rightarrow 0.04 \%$
- product family case: $9.5 \% \rightarrow 0.04 \%$
- Gap fully closed for 97% of the studied instances

Explanation

Reformulation as a semidefinite program:

Results: comments

Improved lower bounds

- Average gap decreased:
- general case: $1.4 \% \rightarrow 0.04 \%$
- product family case: $9.5 \% \rightarrow 0.04 \%$
- Gap fully closed for 97% of the studied instances

Explanation

Reformulation as a semidefinite program:

- Very large extended reformulation in $\mathbb{R}^{(n+1)(n+2) / 2}$

$$
\begin{array}{ll}
\text { Linearization } & \text { SDP reformulation } \\
w_{p q t}=y_{p t} y_{q, t+1} & X_{i j}=x_{p t} x_{q, t^{\prime}}
\end{array}
$$

Results: comments

Improved lower bounds

- Average gap decreased:
- general case: $1.4 \% \rightarrow 0.04 \%$
- product family case: $9.5 \% \rightarrow 0.04 \%$
- Gap fully closed for 97% of the studied instances

Explanation

Reformulation as a semidefinite program:

- Very large extended reformulation in $\mathbb{R}^{(n+1)(n+2) / 2}$

$$
\begin{array}{ll}
\text { Linearization } & \text { SDP reformulation } \\
w_{p q t}=y_{p t} y_{q, t+1} & x_{i j}=x_{p t} x_{q, t^{\prime}}
\end{array}
$$

- Inclusion of an infinite number of constraints

$$
X \succeq 0 \Leftrightarrow \forall v \in \mathbb{R}^{n}, \quad v^{\top} X v \geq 0
$$

Results: comments

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch \& Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

Results: comments

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch \& Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

Explanation

Results: comments

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch \& Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

Explanation

- Computational difficulty of solving a SDP

Results: comments

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch \& Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

Explanation

- Computational difficulty of solving a SDP
- Research-based solvers with non-fully optimized BLAS routines

Results: comments

Very large computation times

- Unrealistic to use semidefinite relaxation within a Branch \& Bound procedure
- Scaling up hindered by numerical unstabilities of the SDP solvers

Explanation

- Computational difficulty of solving a SDP
- Research-based solvers with non-fully optimized BLAS routines
- Resolution of a sequence of SDPs without a warm-start strategy

Plan

(1) Problem presentation

(2) State of the art
(3) Semidefinite programming
4. Semidefinite relaxation of the DLSPSD
(5) Computational results
(6) Conclusion and perspectives

Conclusion and perspectives

Conclusion

- Problem studied: DLSP with sequence-dependent changeover cots
- Main results: very tight lower bounds by semidefinite relaxation
- Quadratic binary formulation
- Exploitation of known results for semidefinite relaxation of generic QBP
- Combination with specific polyhedral results for the DLSP

Conclusion and perspectives

Conclusion

- Problem studied: DLSP with sequence-dependent changeover cots
- Main results: very tight lower bounds by semidefinite relaxation
- Quadratic binary formulation
- Exploitation of known results for semidefinite relaxation of generic QBP
- Combination with specific polyhedral results for the DLSP

Perspectives

- Reduce computation times by implementing a warm-start strategy
- Extend the proposed appraoch to other variants of lot-sizing problems

Thank you for your attention!

