# Cea

# Du classique au quantique : le point de vue des centres de calcul

DE LA RECHERCHE À L'INDUSTRIE

Février 2022

#### Jacques-Charles Lafoucriere

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

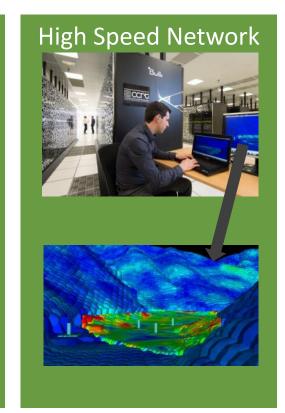


- ► What is a Computing Centre
- Quantum Computing Usage and Integration
- ► National Hybrid HPC Quantum Initiative

#### cea

#### What is a Computing Centre / Data Centre

A computing centre is a large installation dedicated to digital processing


- Processing resources: computers
- Storage resources: disks, magnetic tapes
- Network connections: users are all remote
- Facilities: power supply and cooling

#### Cooling/Power



# Supercomputer





Multidisciplinary teams of experts to pilot these exceptional resources and support users

Commissariat à l'énergie atomique et aux énergies alternatives



High-performance computing mostly uses digital technologies from the consumer industry and a few specific components

- The objective is to take advantage of volume markets and limit the specific to what is strictly necessary.
- > Standard processors, memory, and storage
- > Specific networks related to the need for fast communication between processors
- > Dense integration linked to the need for energy efficiency and proximity of treatment units
- System software developed in community mode

#### All performance comes from parallelism

- In processors
- Between processors

### **Proposed Uses of Quantum Technologies**

#### Quantum Technologies can be used

- To compute through use of Quantum Processing Unit (QPU)
- To communicate between QPU
  - To make a Quantum multi-processor or a Quantum cluster
  - Allow for more qubits than a single one can offer
  - A futuristic model but which has allowed scaling of classical computing
- No quantum storage
  - Only quantum memory is envisaged as a set of specialized qubits, distinct from those of QPUs to reduce the need for computational qubits

# How do we imagine to use QPU?

#### **Quantum Computing power is based on Quantum effects**

#### **QC cannot be used as classical computers**

- It is not a new port of application
- It is a new way of thinking solutions to problems

Quantum Computer are not general purpose computers QC solves specific problems with new algorithms

#### Full digital processing needs a solution based on classical + quantum: the hybrid architecture

- Main part of application runs on classical computer
- Some phases/algorithm are offloaded on QPU

# Cea Hybrid Architecture: Coupling Classical and Quantum

#### Logical coupling or how to use QPUs in digital processing

- Weak coupling
  - A step within a processing chain ("workflow" type)
  - Uses the data center network
  - Requires the ability to share QPU between treatments
  - Only solution if the QPU is very expensive
- Medium coupling
  - A local resource to the supercomputer
  - Uses the network of supercomputer
  - Allows you to dedicate a group of QPUs to a classic treatment
- Strong coupling
  - Like today's GPU-type accelerators
  - Uses either compute node buses or the supercomputer network
  - Requires high-density, low-cost QPUs

#### Ideally digital libraries will hide the way link is done

- Will only be available if major applications are demonstrated

#### **Quantum Computing Context**

#### **Quantum Computing is a promising technology**

- A new way of thinking
- Will bring **new algorithms** to solves scientific/mathematical problems

Today Quantum Computers are real but at a small scale and in laboratories

First industrial products will come soon

Competition is strong and many Europeans companies have solutions (HW/SW) All companies/communities need support from public funding

Quantum computers technology is completely different from classical technology Everybody need to be prepared

system administrators, operators, developers, end-user

#### It's time to get ready for computing centres and user communities

# **Physical integration of quantum computers**

#### What problems quantum computers bring to facilities?

#### QPUs need a specific physical environment

- High vacuum
- Cold temperature close to zero
- Low vibration (laser)

#### Current computer rooms

- Are full of dust
- Are fresh but the tendency is to increase the operating temperature
- Vibrate enormously (disks and fans)

#### ► The solutions planed by start-ups are self contained (integrated facilities)

- Pumps, cryostat, marble and laser
- Start-ups lack experience in making products that can be integrated into a production environment

#### ▶ The new data centers have a modular architecture which allows facilities to be adapted to computers

# Strategy

#### To be ready to use quantum accelerators within a few years

- The use of the quantum computer requires a significant effort from users
- It is mandatory to think quantum
- Classical-quantum coupling remains to be designed

#### > Imagine use cases

- Experiment algorithms on emulators
- Prepare data centers for the use of this type of accelerator
  - > Physical integration
  - Which software environment?
  - > Which interface with the data center type and capacities -?
  - > Train teams

#### Support French startups

- Pasqal, A&B, C12, Quandela, WeLinQ
- > Help them to move from lab prototypes to insdustrial products



#### **Implementation of the strategy**

#### Provide early access to operational environments

- Through a Quantum emulator (Atos QLM) since 2018
- A hardware agnostic software environment
- Avoid technology locking

#### ► Installation of **QPUs** as soon as possible

#### ► Plateforme Nationale de Calcul Quantique Hybride from National Quantum Plan

Setup a platform to promote

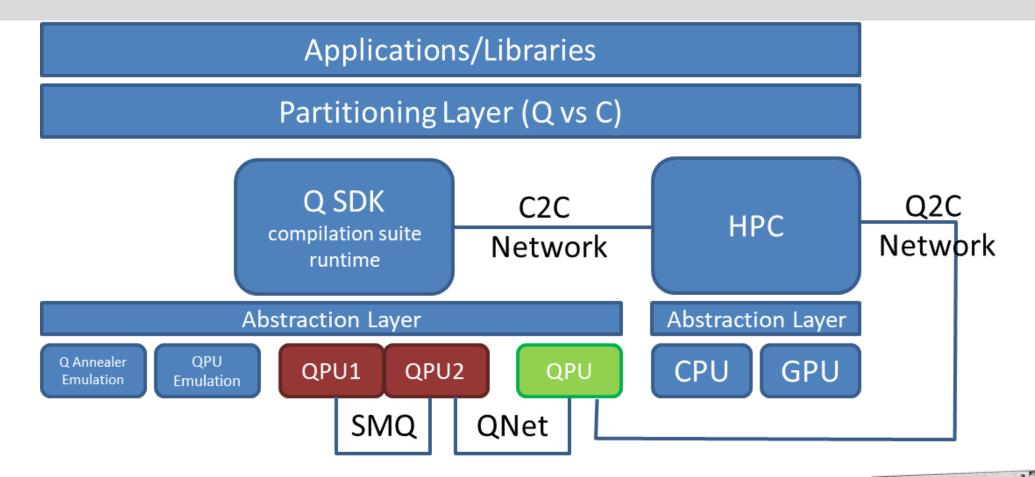
Quantum Computing technologies

Quantum Computing usages

In an HPC environment

Hosted in an French computing centre (CEA/TGCC)

Linked to a Supercomputer (GENCI/Joliot Curie)


Achievement of objectives required

- QPU acquisitions
- Industrial and academic R&D
- Quantum Computing ecosystem support
- User communities support



#### ▶ Programme will be funded for 72 M€ by PIA4 and will leverage Regional & European funding





- ► All QPU will use the same SW stack based on Atos QLM + R&D developments
- Direct access to QPU will be supported
- Designed for NISQ and LSQ

Atros

Atos

Atos

Quantum Learning Machine



A 5 years programme, with multiple axes

#### Atos Quantum Atos Quantum Atos Quantum Atos Quantum Atos Quantum

IQM

#### **QPU acquisition**

#### 4 acquisition phases: standard product or development partnerships

- 1. Analog QPU
- 2. Gate based QPU (possibly based on superconducting, photonics or trapped ions)
- 3. Innovative QPU technologies (such as carbon nanotubes, cats qubits, self-stabilized architectures, ...)
- 4. QPU upgrades and acquisition of emergent promising technologies



# **PNCQH Programme Organization (2/3)**

#### **R&D** programme with industrials and academics

Results will be implemented on the platform

#### Mains thematic are:

- Deployment
  - QPU integration and hybrid architecture (QLM, Cloud, HPC, ...)
  - Software environment (development tools, runtime)
- Applications
  - Optimization and machine learning
  - Simulation of physical systems
- Exploration
  - Noise characterization and mitigation
  - Quantum links for secure/safe/reliable global computation

## **PNCQH Programme Organization (3/3)**

#### **QC ecosystem and User community support**

- PNCQH technologies access through a cloud-based solution
  - Cloud Provider will provide access to similar QC resources found in the hybrid HPC/QC platform to academics (R&D, training, etc.)
- Hybrid QC dissemination
  - Establish a network of **French quantum competence centres** 
    - label "Maison du Quantique »
  - Dissemination, training, acculturation (e.g. workshops, hackathons, etc.)
  - Scientific and industrial use cases development: National Quantum PAck and European Quantum Packs (ex. through a quantum CoE transversal to existing HPC CoEs)

#### Conclusion

- ► Quantum computing is close to be reality in computing centres
- ► Many topics are still work in progress and many challenges are still open
- But all actors preparation is initiated
  - Computing centres
  - Developers
  - End-users

# Cea

#### DE LA RECHERCHE À L'INDUSTRIE

# Merci de votre attention

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr