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“Modern” combinatorial optimization

combine tools from

continuous optimization
interior point methods
(accelerated) gradient
descent
second-order methods

and discrete optimization
graph sparsification
combinatorial
preconditioning
random walks/electric
networks

e.g., best maximum flow algorithms
use IPMs. . .
with fast Laplacian solvers . . .

. . . based on graph sparsifiers
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This talk

quantum algorithms catch up:

1) cut sparsification and cut problems (‘90-‘00)
2) spectral sparsification and Laplacian solving (‘00-‘10)
3) matrix scaling and second-order methods (‘10-‘20)
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Quantum model
quantum time complexity

= total number of elementary gates, queries to input*,
QRAM operations

*typically, adjacency matrix of input graph
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Quantum primitives

key routine = Grover search

consider N elements, k of which are “marked”
Grover search finds marked element in time O(

√
N/k)

variations:

quantum approximate counting:
approximate k to error ϵ in time O(ϵ−1

√
N/k)

amplitude amplification, amplitude estimation
generalize to “marked” subspaces
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Disclaimer

Caveats:

(subquadratic) polynomial speedup
QRAM requirements

Motivation:

long-term applications, better understanding of quantum
computing
new insights in classical algorithms
(similar to streaming, dynamic, distributed, . . . settings)

“true” complexity of a problem?
(e.g., complexity of matrix multiplication)
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Quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)

2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)
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Cut sparsification

ϵ-cut sparsifier H of G is sparse subgraph
such that cuts in H approximate cuts in G:

valH(S) =
∑

x∈S,y/∈S

wH(x, y) = (1 ± ϵ) valG(S), ∀S ⊂ V.

[Benczúr-Karger ’96]: exists ϵ-cut sparsifier with Õ(n/ϵ2) edges

= building block of many classical algorithms for graph problems
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Algorithm for cut sparsification

1 construct Õ(1/ϵ2) minimum spanning trees, keep these edges
2 ∀ remaining edge: keep with probability 1/2 and double its weight

= ϵ-cut sparsifier with ≈ m/2 + Õ(n/ϵ2) edges (w.h.p.)

→ repeat O(log n) times = ϵ-cut sparsifier with Õ(n/ϵ2) edges

using quantum algorithm for MST* + more work:

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-cut sparsifier H in
time Õ(n3/2/ϵ), which is optimal.

*[Dürr-Heiligman-Høyer-Mhalla ’08]
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Quantum speedup for cut problems

1 construct ϵ-sparsifier H
2 Classically solve cut problem in H

= approximate minimum cut, maximum cut, sparsest cut, . . . in time

Õ(n3/2/ϵ)

versus Ω(n2) classically
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Õ(n3/2/ϵ)

versus Ω(n2) classically

9



Quantum speedup for cut problems

With more work (on simple graphs):

exact minimum cut
in time Õ(n3/2), optimal

[Apers-Lee ’20]

exact minimum s-t cut
in time Õ(n11/6), suboptimal?

[Apers-Auza-Lee ’21]

versus Ω(n2) classically
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Quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)

2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)
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Spectral sparsification

spectral sparsifier H is sparse subgraph of G such that
“quadratic forms” in Laplacian LH approximate those in LG:

xTLHx =
∑
i<j

wH(i, j)(xi − xj)
2 = (1 ± ϵ)xTLGx, ∀x ∈ Rn

e.g., if x = 1S for S ⊆ [n] then

xTLHx =
∑

i∈S,j/∈S

wH(i, j) = valH(S)

hence, spectral sparsifier ⇒ cut sparsifier
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Spectral sparsification
[Spielman-Teng ’04]: exists ϵ-spectral sparsifier with Õ(n/ϵ2) edges

→ building block of near-linear time algorithm
for solving Laplacian system LGx = b

= Gödel prize 2015

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-spectral sparsifier
in time Õ(n3/2/ϵ), which is optimal.
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Quantum speedup for Laplacian solving

1 construct ϵ-spectral sparsifier H
2 Classically solve Laplacian system LHx = b

= ϵ-approximate solution of LGx = b in time

Õ(n3/2/ϵ)

similarly, quantum speedups for spectral clustering, RW properties, . . .
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Quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)
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Matrix scaling

Input:
matrix A ∈ Rn×n

>0 , target marginals r, c ∈ Rn
>0

Goal:
find “rescaling”

XAY =

ex1 0
. . .

0 exn


︸ ︷︷ ︸

row rescaling

A

ey1 0
. . .

0 eyn


︸ ︷︷ ︸

column rescaling

such that XAY has row sums r and column sums c

Applications:
approximating matrix permanent, optimal transport in machine

learning, numerical linear algebra, . . .

16



Matrix scaling

Input:
matrix A ∈ Rn×n

>0 , target marginals r, c ∈ Rn
>0

Goal:
find “rescaling”

XAY =

ex1 0
. . .

0 exn


︸ ︷︷ ︸

row rescaling

A

ey1 0
. . .

0 eyn


︸ ︷︷ ︸

column rescaling

such that XAY has row sums r and column sums c

Applications:
approximating matrix permanent, optimal transport in machine

learning, numerical linear algebra, . . .

16



Matrix scaling

Input:
matrix A ∈ Rn×n

>0 , target marginals r, c ∈ Rn
>0

Goal:
find “rescaling”

XAY =

ex1 0
. . .

0 exn


︸ ︷︷ ︸

row rescaling

A

ey1 0
. . .

0 eyn


︸ ︷︷ ︸

column rescaling

such that XAY has row sums r and column sums c

Applications:
approximating matrix permanent, optimal transport in machine

learning, numerical linear algebra, . . .

16



Algorithms for matrix scaling

“folklore” classical algorithm:

complexity Õ(n2/ϵ) for ϵ-approximate solution
by iterative rescaling

[Sinkhorn ’64]

A → X1A︸︷︷︸
fix r

→ X1AY1︸ ︷︷ ︸
fix c

→ X2X1AY1︸ ︷︷ ︸
fix r

→ . . .

↓

quantum algorithm:

complexity Õ(n3/2/ϵ3) for ϵ-approximate solution
by Sinkhorn + quantum approximate counting

[van Apeldoorn-Gribling-Li-Nieuwboer-Walter-de Wolf ’21]
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Algorithms for matrix scaling

observation:
matrix scaling = convex optimization problem

f (x, y) =
∑

i,j

Ai,jexi+yj − rTx − cTy

∇f (x, y) = 0 ⇔ (x, y) describes rescaling

↓

Sinkhorn, Õ(n2/ϵ): first-order method

improved algorithm:
complexity Õ(n2 log(1/ϵ)) using second-order method

[Cohen-Mądry-Tsipras-Vladu ’17]

key tool: Hessian of f is Laplacian matrix
→ can use efficient Laplacian solving!
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Algorithms for matrix scaling

complexity Õ(n2 log(1/ϵ)) using second-order method
[Cohen-Mądry-Tsipras-Vladu ’17]

? improved quantum algorithm for matrix scaling ?

[Gribling-Nieuwboer ’21]:
complexity Õ(n3/2/ϵ2) using second-order method

+ quantum sparsification and Laplacian solving

also, no quantum speedup for ϵ ≪ 1

19
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Summary:

quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)
2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)

Future directions:

1) quantum speedup in interior point methods?
flagship problem = maximum flow (‘20-. . . )

2) continuous ↔ discrete trends also in sampling algorithms
e.g., logconcave sampling, estimating volume of convex bodies, . . .
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