# Quantum algorithms in "modern" combinatorial optimization

Simon Apers

(CNRS, IRIF)

Journée Francilienne de Recherche Opérationnelle ENSIIE, February 2022

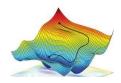
combine tools from

1

#### combine tools from

## continuous optimization

- interior point methods
- (accelerated) gradient descent
- second-order methods

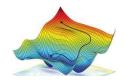


1

#### combine tools from

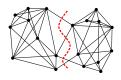
### continuous optimization

- interior point methods
- (accelerated) gradient descent
- second-order methods



## and discrete optimization

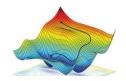
- graph sparsification
- combinatorial preconditioning
- random walks/electric networks



#### combine tools from

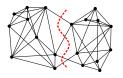
#### continuous optimization

- interior point methods
- (accelerated) gradient descent
- second-order methods



## and discrete optimization

- graph sparsification
- combinatorial preconditioning
- random walks/electric networks



e.g., best maximum flow algorithms

use IPMs... with fast Laplacian solvers ...

... based on graph sparsifiers

1

quantum algorithms catch up:

## quantum algorithms catch up:

1) cut sparsification and cut problems ('90-'00)

## quantum algorithms catch up:

- 1) cut sparsification and cut problems ('90-'00)
- 2) spectral sparsification and Laplacian solving ('00-'10)

## quantum algorithms catch up:

- 1) cut sparsification and cut problems ('90-'00)
- 2) spectral sparsification and Laplacian solving ('00-'10)
- 3) matrix scaling and second-order methods ('10-'20)

#### Quantum model

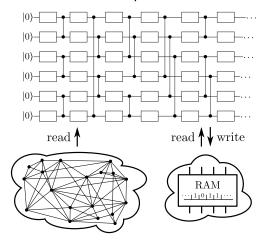
## quantum time complexity

= total number of elementary gates, queries to input\*, QRAM operations

#### Quantum model

## quantum time complexity

= total number of elementary gates, queries to input\*, QRAM operations



\*typically, adjacency matrix of input graph

key routine = Grover search

key routine = Grover search

consider N elements, k of which are "marked" Grover search finds marked element in time  $O(\sqrt{N/k})$ 

key routine = Grover search

consider N elements, k of which are "marked" Grover search finds marked element in time  $O(\sqrt{N/k})$ 

variations:

quantum approximate counting: approximate k to error  $\epsilon$  in time  $O(\epsilon^{-1} \sqrt{N/k})$ 

key routine = Grover search

consider N elements, k of which are "marked" Grover search finds marked element in time  $O(\sqrt{N/k})$ 

#### variations:

quantum approximate counting: approximate k to error  $\epsilon$  in time  $O(\epsilon^{-1}\sqrt{N/k})$ 

amplitude amplification, amplitude estimation generalize to "marked" subspaces

## **Caveats:**

## Caveats:

• (subquadratic) polynomial speedup

#### **Caveats:**

- (subquadratic) polynomial speedup
- QRAM requirements

#### Caveats:

- (subquadratic) polynomial speedup
- QRAM requirements

## **Motivation:**

#### **Caveats:**

- (subquadratic) polynomial speedup
- QRAM requirements

#### **Motivation:**

long-term applications, better understanding of quantum computing

#### **Caveats:**

- (subquadratic) polynomial speedup
- QRAM requirements

#### **Motivation:**

- long-term applications, better understanding of quantum computing
- new insights in classical algorithms (similar to streaming, dynamic, distributed, ... settings)

#### **Caveats:**

- (subquadratic) polynomial speedup
- QRAM requirements

#### **Motivation:**

- long-term applications, better understanding of quantum computing
- new insights in classical algorithms (similar to streaming, dynamic, distributed, ... settings)
- "true" complexity of a problem? (e.g., complexity of matrix multiplication)

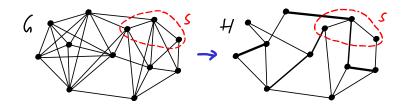
# Quantum algorithms for

- 1) cut sparsification and cut problems ('90-'00)
  - 2) spectral sparsification and Laplacian solving ('00-'10)
    - 3) matrix scaling and second-order methods ('10-'20)

## **Cut sparsification**

 $\epsilon$ -cut sparsifier H of G is sparse subgraph such that cuts in H approximate cuts in G:

$$\operatorname{val}_H(S) = \sum_{x \in S, y \notin S} w_H(x, y) = (1 \pm \epsilon) \operatorname{val}_G(S), \quad \forall S \subset V.$$

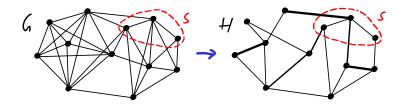


7

## **Cut sparsification**

 $\epsilon$ -cut sparsifier H of G is sparse subgraph such that cuts in H approximate cuts in G:

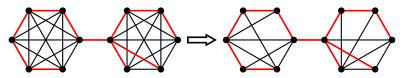
$$\operatorname{val}_H(S) = \sum_{x \in S, y \notin S} w_H(x, y) = (1 \pm \epsilon) \operatorname{val}_G(S), \quad \forall S \subset V.$$

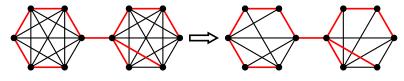


[Benczúr-Karger '96]: exists  $\epsilon$ -cut sparsifier with  $\widetilde{O}(n/\epsilon^2)$  edges

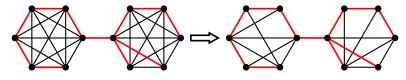
= building block of many classical algorithms for graph problems

7

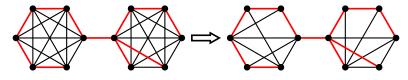




 $\ensuremath{ \bigcirc \hspace{-8pt} }$  construct  $\ensuremath{ \widetilde{O} (1/\epsilon^2)}$  minimum spanning trees, keep these edges

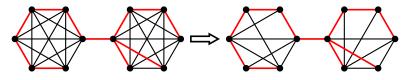


- construct  $\widetilde{O}(1/\epsilon^2)$  minimum spanning trees, keep these edges
- f 2  $\forall$  remaining edge: keep with probability 1/2 and double its weight

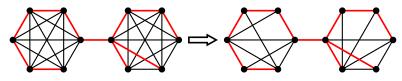


- lacktriangle construct  $\widetilde{O}(1/\epsilon^2)$  minimum spanning trees, keep these edges
- f 2  $\forall$  remaining edge: keep with probability 1/2 and double its weight

=  $\epsilon$ -cut sparsifier with  $\approx m/2 + \widetilde{O}(n/\epsilon^2)$  edges (w.h.p.)



- lacktriangle construct  $\widetilde{O}(1/\epsilon^2)$  minimum spanning trees, keep these edges
- $oldsymbol{0}$   $\forall$  remaining edge: keep with probability 1/2 and double its weight
  - =  $\epsilon$ -cut sparsifier with  $\approx m/2 + \widetilde{O}(n/\epsilon^2)$  edges (w.h.p.)
  - $\rightarrow$  repeat  $O(\log n)$  times =  $\epsilon$ -cut sparsifier with  $\widetilde{O}(n/\epsilon^2)$  edges



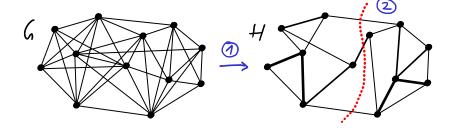
- construct  $O(1/\epsilon^2)$  minimum spanning trees, keep these edges
- $oldsymbol{0}$   $\forall$  remaining edge: keep with probability 1/2 and double its weight
  - =  $\epsilon$ -cut sparsifier with  $\approx m/2 + \widetilde{O}(n/\epsilon^2)$  edges (w.h.p.)
  - ightarrow repeat  $O(\log n)$  times =  $\epsilon$ -cut sparsifier with  $\widetilde{O}(n/\epsilon^2)$  edges

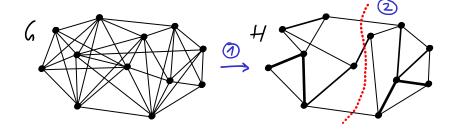
using quantum algorithm for MST\* + more work:

# Theorem (A-de Wolf '20)

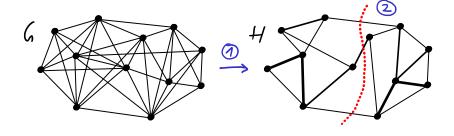
There is a quantum algorithm for constructing an  $\epsilon$ -cut sparsifier H in time  $\widetilde{O}(n^{3/2}/\epsilon)$ , which is optimal.

\*[Dürr-Heiligman-Høyer-Mhalla '08]

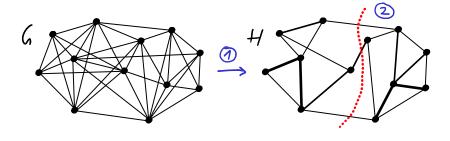




**①** construct  $\epsilon$ -sparsifier H



- **1** construct  $\epsilon$ -sparsifier H
- Classically solve cut problem in H



- **1** construct  $\epsilon$ -sparsifier H
- Classically solve cut problem in H
  - = approximate minimum cut, maximum cut, sparsest cut, ... in time

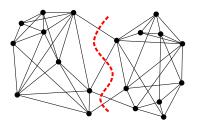
$$\widetilde{O}(n^{3/2}/\epsilon)$$

versus  $\Omega(n^2)$  classically

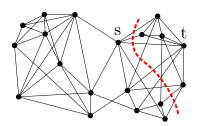
a

## With more work (on simple graphs):

exact minimum cut in time  $\widetilde{O}(n^{3/2})$ , optimal [Apers-Lee '20]



exact minimum s-t cut in time  $\widetilde{O}(n^{11/6})$ , suboptimal? [Apers-Auza-Lee '21]



versus  $\Omega(n^2)$  classically

## Quantum algorithms for

1) cut sparsification and cut problems ('90-'00)

# 2) spectral sparsification and Laplacian solving ('00-'10)

3) matrix scaling and second-order methods ('10-'20)

spectral sparsifier H is sparse subgraph of G such that "quadratic forms" in Laplacian  $L_H$  approximate those in  $L_G$ :

$$x^T L_H x = \sum_{i < j} w_H(i, j) (x_i - x_j)^2 = (1 \pm \epsilon) x^T L_G x, \quad \forall x \in \mathbb{R}^n$$

spectral sparsifier H is sparse subgraph of G such that "quadratic forms" in Laplacian  $L_H$  approximate those in  $L_G$ :

$$x^T L_H x = \sum_{i < j} w_H(i,j) (x_i - x_j)^2 = (1 \pm \epsilon) x^T L_G x, \quad \forall x \in \mathbb{R}^n$$
  
e.g., if  $x = 1_S$  for  $S \subseteq [n]$  then  $x^T L_H x = \sum_{i \in S, i \notin S} w_H(i,j) = \operatorname{val}_H(S)$ 

spectral sparsifier H is sparse subgraph of G such that "quadratic forms" in Laplacian  $L_H$  approximate those in  $L_G$ :

$$x^{T}L_{H}x = \sum_{i < j} w_{H}(i,j)(x_{i} - x_{j})^{2} = (1 \pm \epsilon)x^{T}L_{G}x, \quad \forall x \in \mathbb{R}^{n}$$

e.g., if 
$$x = 1_S$$
 for  $S \subseteq [n]$  then

$$x^T L_H x = \sum_{i \in S, j \notin S} w_H(i, j) = \operatorname{val}_H(S)$$

hence, spectral sparsifier ⇒ cut sparsifier

[Spielman-Teng '04]: exists  $\epsilon$ -spectral sparsifier with  $\widetilde{O}(n/\epsilon^2)$  edges

[Spielman-Teng '04]: exists  $\epsilon$ -spectral sparsifier with  $\widetilde{O}(n/\epsilon^2)$  edges

 $\rightarrow$  building block of near-linear time algorithm for solving Laplacian system  $L_G x = b$ 

[Spielman-Teng '04]: exists  $\epsilon$ -spectral sparsifier with  $\widetilde{O}(n/\epsilon^2)$  edges

ightarrow building block of near-linear time algorithm for solving Laplacian system  $L_G x = b$ 

= Gödel prize 2015





[Spielman-Teng '04]: exists  $\epsilon$ -spectral sparsifier with  $\widetilde{O}(n/\epsilon^2)$  edges

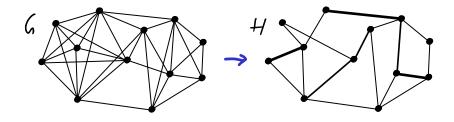
- $\rightarrow$  building block of near-linear time algorithm for solving Laplacian system  $L_{GX} = b$ 
  - = Gödel prize 2015

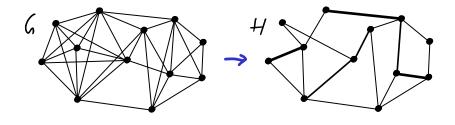




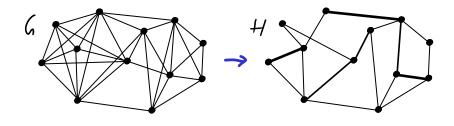
## Theorem (A-de Wolf '20)

There is a quantum algorithm for constructing an  $\epsilon$ -spectral sparsifier in time  $\widetilde{O}(n^{3/2}/\epsilon)$ , which is optimal.

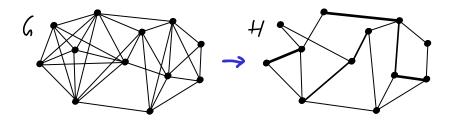




**1** construct  $\epsilon$ -spectral sparsifier H



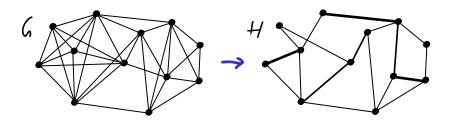
- **1** construct  $\epsilon$ -spectral sparsifier H
- ② Classically solve Laplacian system  $L_H x = b$



- lacktriangledown construct  $\epsilon$ -spectral sparsifier H
- ② Classically solve Laplacian system  $L_H x = b$

= 
$$\epsilon$$
-approximate solution of  $L_G x = b$  in time

$$\widetilde{O}(n^{3/2}/\epsilon)$$



- **1** construct  $\epsilon$ -spectral sparsifier H
- ② Classically solve Laplacian system  $L_H x = b$

=  $\epsilon$ -approximate solution of  $L_G x = b$  in time

$$\widetilde{O}(n^{3/2}/\epsilon)$$

similarly, quantum speedups for spectral clustering, RW properties, ...

## Quantum algorithms for

- 1) cut sparsification and cut problems ('90-'00)
- 2) spectral sparsification and Laplacian solving ('00-'10)
- 3) matrix scaling and second-order methods ('10-'20)

### **Matrix scaling**

### Input:

matrix  $A \in \mathbb{R}^{n \times n}_{>0}$ , target marginals  $r, c \in \mathbb{R}^n_{>0}$ 

## **Matrix scaling**

#### Input:

matrix  $A \in \mathbb{R}^{n \times n}_{>0}$ , target marginals  $r, c \in \mathbb{R}^n_{>0}$ 

#### Goal:

find "rescaling"

$$XAY = \underbrace{\begin{bmatrix} e^{x_1} & 0 \\ & \ddots & \\ 0 & e^{x_n} \end{bmatrix}}_{\text{row rescaling}} A \underbrace{\begin{bmatrix} e^{y_1} & 0 \\ & \ddots & \\ 0 & e^{y_n} \end{bmatrix}}_{\text{column rescaling}}$$

such that XAY has row sums r and column sums c

## **Matrix scaling**

#### Input:

matrix  $A \in \mathbb{R}^{n \times n}_{>0}$ , target marginals  $r, c \in \mathbb{R}^n_{>0}$ 

#### Goal:

find "rescaling"

$$XAY = \underbrace{\begin{bmatrix} e^{x_1} & 0 \\ & \ddots & \\ 0 & e^{x_n} \end{bmatrix}}_{\text{row rescaling}} A \underbrace{\begin{bmatrix} e^{y_1} & 0 \\ & \ddots & \\ 0 & e^{y_n} \end{bmatrix}}_{\text{column rescaling}}$$

such that XAY has row sums r and column sums c

#### Applications:

approximating matrix permanent, optimal transport in machine learning, numerical linear algebra, ...

### "folklore" classical algorithm:

complexity  $\widetilde{O}(n^2/\epsilon)$  for  $\epsilon$ -approximate solution by iterative rescaling [Sinkhorn '64]

$$A \to \underbrace{X_1 A}_{\text{fix } r} \to \underbrace{X_1 A Y_1}_{\text{fix } c} \to \underbrace{X_2 X_1 A Y_1}_{\text{fix } r} \to \dots$$

### "folklore" classical algorithm:

complexity  $\widetilde{O}(n^2/\epsilon)$  for  $\epsilon$ -approximate solution by iterative rescaling [Sinkhorn '64]

$$A \to \underbrace{X_1 A}_{\text{fix } r} \to \underbrace{X_1 A Y_1}_{\text{fix } c} \to \underbrace{X_2 X_1 A Y_1}_{\text{fix } r} \to \dots$$

#### quantum algorithm:

complexity  $\widetilde{O}(n^{3/2}/\epsilon^3)$  for  $\epsilon$ -approximate solution by Sinkhorn + quantum approximate counting [van Apeldoorn-Gribling-Li-Nieuwboer-Walter-de Wolf '21]

#### observation:

matrix scaling = convex optimization problem

#### observation:

matrix scaling = convex optimization problem

$$f(x, y) = \sum_{i,j} A_{i,j} e^{x_i + y_j} - r^T x - c^T y$$

 $\nabla f(x,y) = 0 \iff (x,y)$  describes rescaling

#### observation:

matrix scaling = convex optimization problem

$$f(x,y) = \sum_{i,j} A_{i,j} e^{x_i + y_j} - r^T x - c^T y$$

 $\nabla f(x,y) = 0 \Leftrightarrow (x,y)$  describes rescaling



Sinkhorn,  $\widetilde{O}(n^2/\epsilon)$ : first-order method

#### observation:

matrix scaling = convex optimization problem

$$f(x,y) = \sum_{i,j} A_{i,j} e^{x_i + y_j} - r^T x - c^T y$$

 $\nabla f(x,y) = 0 \Leftrightarrow (x,y)$  describes rescaling



Sinkhorn,  $\widetilde{O}(n^2/\epsilon)$ : first-order method

### improved algorithm:

complexity  $\widetilde{O}(n^2\log(1/\epsilon))$  using  $second\mbox{-}order$  method [Cohen-Mądry-Tsipras-Vladu '17]

#### observation:

matrix scaling = convex optimization problem

$$f(x,y) = \sum_{i,j} A_{i,j} e^{x_i + y_j} - r^T x - c^T y$$

 $\nabla f(x,y) = 0 \Leftrightarrow (x,y)$  describes rescaling



Sinkhorn,  $\widetilde{O}(n^2/\epsilon)$ : first-order method

### improved algorithm:

complexity  $\widetilde{O}(n^2\log(1/\epsilon))$  using  $second\mbox{-}order$  method [Cohen-Mądry-Tsipras-Vladu '17]

key tool: Hessian of f is Laplacian matrix  $\rightarrow$  can use efficient Laplacian solving!

complexity  $\widetilde{O}(n^2\log(1/\epsilon))$  using  $second\mbox{-}order$  method [Cohen-Mądry-Tsipras-Vladu '17]

? improved quantum algorithm for matrix scaling ?

complexity 
$$\widetilde{O}(n^2 \log(1/\epsilon))$$
 using  $second\mbox{-}order$  method [Cohen-Mądry-Tsipras-Vladu '17]

? improved quantum algorithm for matrix scaling ?

[Gribling-Nieuwboer '21]: complexity  $\widetilde{O}(n^{3/2}/\epsilon^2)$  using second-order method + quantum sparsification and Laplacian solving

complexity 
$$\widetilde{O}(n^2 \log(1/\epsilon))$$
 using  $second\mbox{-}order$  method [Cohen-Mądry-Tsipras-Vladu '17]

? improved quantum algorithm for matrix scaling ?

[Gribling-Nieuwboer '21]: complexity  $\widetilde{O}(n^{3/2}/\epsilon^2)$  using second-order method + quantum sparsification and Laplacian solving

also, no quantum speedup for  $\epsilon\ll 1$ 

#### Summary:

#### quantum algorithms for

- 1) cut sparsification and cut problems ('90-'00)
- 2) spectral sparsification and Laplacian solving ('00-'10)
  - 3) matrix scaling and second-order methods ('10-'20)

### Summary:

### quantum algorithms for

- 1) cut sparsification and cut problems ('90-'00)
- 2) spectral sparsification and Laplacian solving ('00-'10)
  - 3) matrix scaling and second-order methods ('10-'20)

#### Future directions:

1) quantum speedup in interior point methods? flagship problem = maximum flow ('20-...)

### Summary:

#### quantum algorithms for

- 1) cut sparsification and cut problems ('90-'00)
- 2) spectral sparsification and Laplacian solving ('00-'10)
  - 3) matrix scaling and second-order methods ('10-'20)

#### Future directions:

- quantum speedup in interior point methods?
  flagship problem = maximum flow ('20-...)
- 2) continuous  $\leftrightarrow$  discrete trends also in sampling algorithms e.g., logconcave sampling, estimating volume of convex bodies,  $\dots$