
Quantum algorithms in
“modern” combinatorial optimization

Simon Apers

(CNRS, IRIF)

Journée Francilienne de Recherche Opérationnelle
ENSIIE, February 2022



“Modern” combinatorial optimization

combine tools from

continuous optimization
interior point methods
(accelerated) gradient
descent
second-order methods

and discrete optimization
graph sparsification
combinatorial
preconditioning
random walks/electric
networks

e.g., best maximum flow algorithms
use IPMs. . .
with fast Laplacian solvers . . .

. . . based on graph sparsifiers

1



“Modern” combinatorial optimization

combine tools from
continuous optimization

interior point methods
(accelerated) gradient
descent
second-order methods

and discrete optimization
graph sparsification
combinatorial
preconditioning
random walks/electric
networks

e.g., best maximum flow algorithms
use IPMs. . .
with fast Laplacian solvers . . .

. . . based on graph sparsifiers

1



“Modern” combinatorial optimization

combine tools from
continuous optimization

interior point methods
(accelerated) gradient
descent
second-order methods

and discrete optimization
graph sparsification
combinatorial
preconditioning
random walks/electric
networks

e.g., best maximum flow algorithms
use IPMs. . .
with fast Laplacian solvers . . .

. . . based on graph sparsifiers

1



“Modern” combinatorial optimization

combine tools from
continuous optimization

interior point methods
(accelerated) gradient
descent
second-order methods

and discrete optimization
graph sparsification
combinatorial
preconditioning
random walks/electric
networks

e.g., best maximum flow algorithms
use IPMs. . .
with fast Laplacian solvers . . .

. . . based on graph sparsifiers

1



This talk

quantum algorithms catch up:

1) cut sparsification and cut problems (‘90-‘00)
2) spectral sparsification and Laplacian solving (‘00-‘10)
3) matrix scaling and second-order methods (‘10-‘20)

2



This talk

quantum algorithms catch up:

1) cut sparsification and cut problems (‘90-‘00)

2) spectral sparsification and Laplacian solving (‘00-‘10)
3) matrix scaling and second-order methods (‘10-‘20)

2



This talk

quantum algorithms catch up:

1) cut sparsification and cut problems (‘90-‘00)
2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)

2



This talk

quantum algorithms catch up:

1) cut sparsification and cut problems (‘90-‘00)
2) spectral sparsification and Laplacian solving (‘00-‘10)
3) matrix scaling and second-order methods (‘10-‘20)

2



Quantum model
quantum time complexity

= total number of elementary gates, queries to input*,
QRAM operations

*typically, adjacency matrix of input graph

3



Quantum model
quantum time complexity

= total number of elementary gates, queries to input*,
QRAM operations

*typically, adjacency matrix of input graph
3



Quantum primitives

key routine = Grover search

consider N elements, k of which are “marked”
Grover search finds marked element in time O(

√
N/k)

variations:

quantum approximate counting:
approximate k to error ϵ in time O(ϵ−1

√
N/k)

amplitude amplification, amplitude estimation
generalize to “marked” subspaces

4



Quantum primitives

key routine = Grover search

consider N elements, k of which are “marked”
Grover search finds marked element in time O(

√
N/k)

variations:

quantum approximate counting:
approximate k to error ϵ in time O(ϵ−1

√
N/k)

amplitude amplification, amplitude estimation
generalize to “marked” subspaces

4



Quantum primitives

key routine = Grover search

consider N elements, k of which are “marked”
Grover search finds marked element in time O(

√
N/k)

variations:

quantum approximate counting:
approximate k to error ϵ in time O(ϵ−1

√
N/k)

amplitude amplification, amplitude estimation
generalize to “marked” subspaces

4



Quantum primitives

key routine = Grover search

consider N elements, k of which are “marked”
Grover search finds marked element in time O(

√
N/k)

variations:

quantum approximate counting:
approximate k to error ϵ in time O(ϵ−1

√
N/k)

amplitude amplification, amplitude estimation
generalize to “marked” subspaces

4



Disclaimer

Caveats:

(subquadratic) polynomial speedup
QRAM requirements

Motivation:

long-term applications, better understanding of quantum
computing
new insights in classical algorithms
(similar to streaming, dynamic, distributed, . . . settings)

“true” complexity of a problem?
(e.g., complexity of matrix multiplication)

5



Disclaimer

Caveats:

(subquadratic) polynomial speedup

QRAM requirements

Motivation:

long-term applications, better understanding of quantum
computing
new insights in classical algorithms
(similar to streaming, dynamic, distributed, . . . settings)

“true” complexity of a problem?
(e.g., complexity of matrix multiplication)

5



Disclaimer

Caveats:

(subquadratic) polynomial speedup
QRAM requirements

Motivation:

long-term applications, better understanding of quantum
computing
new insights in classical algorithms
(similar to streaming, dynamic, distributed, . . . settings)

“true” complexity of a problem?
(e.g., complexity of matrix multiplication)

5



Disclaimer

Caveats:

(subquadratic) polynomial speedup
QRAM requirements

Motivation:

long-term applications, better understanding of quantum
computing
new insights in classical algorithms
(similar to streaming, dynamic, distributed, . . . settings)

“true” complexity of a problem?
(e.g., complexity of matrix multiplication)

5



Disclaimer

Caveats:

(subquadratic) polynomial speedup
QRAM requirements

Motivation:

long-term applications, better understanding of quantum
computing

new insights in classical algorithms
(similar to streaming, dynamic, distributed, . . . settings)

“true” complexity of a problem?
(e.g., complexity of matrix multiplication)

5



Disclaimer

Caveats:

(subquadratic) polynomial speedup
QRAM requirements

Motivation:

long-term applications, better understanding of quantum
computing
new insights in classical algorithms
(similar to streaming, dynamic, distributed, . . . settings)

“true” complexity of a problem?
(e.g., complexity of matrix multiplication)

5



Disclaimer

Caveats:

(subquadratic) polynomial speedup
QRAM requirements

Motivation:

long-term applications, better understanding of quantum
computing
new insights in classical algorithms
(similar to streaming, dynamic, distributed, . . . settings)

“true” complexity of a problem?
(e.g., complexity of matrix multiplication)

5



Quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)

2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)

6



Cut sparsification

ϵ-cut sparsifier H of G is sparse subgraph
such that cuts in H approximate cuts in G:

valH(S) =
∑

x∈S,y/∈S

wH(x, y) = (1 ± ϵ) valG(S), ∀S ⊂ V.

[Benczúr-Karger ’96]: exists ϵ-cut sparsifier with Õ(n/ϵ2) edges

= building block of many classical algorithms for graph problems

7



Cut sparsification

ϵ-cut sparsifier H of G is sparse subgraph
such that cuts in H approximate cuts in G:

valH(S) =
∑

x∈S,y/∈S

wH(x, y) = (1 ± ϵ) valG(S), ∀S ⊂ V.

[Benczúr-Karger ’96]: exists ϵ-cut sparsifier with Õ(n/ϵ2) edges

= building block of many classical algorithms for graph problems

7



Algorithm for cut sparsification

1 construct Õ(1/ϵ2) minimum spanning trees, keep these edges
2 ∀ remaining edge: keep with probability 1/2 and double its weight

= ϵ-cut sparsifier with ≈ m/2 + Õ(n/ϵ2) edges (w.h.p.)

→ repeat O(log n) times = ϵ-cut sparsifier with Õ(n/ϵ2) edges

using quantum algorithm for MST* + more work:

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-cut sparsifier H in
time Õ(n3/2/ϵ), which is optimal.

*[Dürr-Heiligman-Høyer-Mhalla ’08]

8



Algorithm for cut sparsification

1 construct Õ(1/ϵ2) minimum spanning trees, keep these edges

2 ∀ remaining edge: keep with probability 1/2 and double its weight

= ϵ-cut sparsifier with ≈ m/2 + Õ(n/ϵ2) edges (w.h.p.)

→ repeat O(log n) times = ϵ-cut sparsifier with Õ(n/ϵ2) edges

using quantum algorithm for MST* + more work:

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-cut sparsifier H in
time Õ(n3/2/ϵ), which is optimal.

*[Dürr-Heiligman-Høyer-Mhalla ’08]

8



Algorithm for cut sparsification

1 construct Õ(1/ϵ2) minimum spanning trees, keep these edges
2 ∀ remaining edge: keep with probability 1/2 and double its weight

= ϵ-cut sparsifier with ≈ m/2 + Õ(n/ϵ2) edges (w.h.p.)

→ repeat O(log n) times = ϵ-cut sparsifier with Õ(n/ϵ2) edges

using quantum algorithm for MST* + more work:

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-cut sparsifier H in
time Õ(n3/2/ϵ), which is optimal.

*[Dürr-Heiligman-Høyer-Mhalla ’08]

8



Algorithm for cut sparsification

1 construct Õ(1/ϵ2) minimum spanning trees, keep these edges
2 ∀ remaining edge: keep with probability 1/2 and double its weight

= ϵ-cut sparsifier with ≈ m/2 + Õ(n/ϵ2) edges (w.h.p.)

→ repeat O(log n) times = ϵ-cut sparsifier with Õ(n/ϵ2) edges

using quantum algorithm for MST* + more work:

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-cut sparsifier H in
time Õ(n3/2/ϵ), which is optimal.

*[Dürr-Heiligman-Høyer-Mhalla ’08]

8



Algorithm for cut sparsification

1 construct Õ(1/ϵ2) minimum spanning trees, keep these edges
2 ∀ remaining edge: keep with probability 1/2 and double its weight

= ϵ-cut sparsifier with ≈ m/2 + Õ(n/ϵ2) edges (w.h.p.)

→ repeat O(log n) times = ϵ-cut sparsifier with Õ(n/ϵ2) edges

using quantum algorithm for MST* + more work:

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-cut sparsifier H in
time Õ(n3/2/ϵ), which is optimal.

*[Dürr-Heiligman-Høyer-Mhalla ’08]

8



Algorithm for cut sparsification

1 construct Õ(1/ϵ2) minimum spanning trees, keep these edges
2 ∀ remaining edge: keep with probability 1/2 and double its weight

= ϵ-cut sparsifier with ≈ m/2 + Õ(n/ϵ2) edges (w.h.p.)

→ repeat O(log n) times = ϵ-cut sparsifier with Õ(n/ϵ2) edges

using quantum algorithm for MST* + more work:

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-cut sparsifier H in
time Õ(n3/2/ϵ), which is optimal.

*[Dürr-Heiligman-Høyer-Mhalla ’08]
8



Quantum speedup for cut problems

1 construct ϵ-sparsifier H
2 Classically solve cut problem in H

= approximate minimum cut, maximum cut, sparsest cut, . . . in time

Õ(n3/2/ϵ)

versus Ω(n2) classically

9



Quantum speedup for cut problems

1 construct ϵ-sparsifier H

2 Classically solve cut problem in H

= approximate minimum cut, maximum cut, sparsest cut, . . . in time

Õ(n3/2/ϵ)

versus Ω(n2) classically

9



Quantum speedup for cut problems

1 construct ϵ-sparsifier H
2 Classically solve cut problem in H

= approximate minimum cut, maximum cut, sparsest cut, . . . in time

Õ(n3/2/ϵ)

versus Ω(n2) classically

9



Quantum speedup for cut problems

1 construct ϵ-sparsifier H
2 Classically solve cut problem in H

= approximate minimum cut, maximum cut, sparsest cut, . . . in time

Õ(n3/2/ϵ)

versus Ω(n2) classically

9



Quantum speedup for cut problems

With more work (on simple graphs):

exact minimum cut
in time Õ(n3/2), optimal

[Apers-Lee ’20]

exact minimum s-t cut
in time Õ(n11/6), suboptimal?

[Apers-Auza-Lee ’21]

versus Ω(n2) classically

10



Quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)

2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)

11



Spectral sparsification

spectral sparsifier H is sparse subgraph of G such that
“quadratic forms” in Laplacian LH approximate those in LG:

xTLHx =
∑
i<j

wH(i, j)(xi − xj)
2 = (1 ± ϵ)xTLGx, ∀x ∈ Rn

e.g., if x = 1S for S ⊆ [n] then

xTLHx =
∑

i∈S,j/∈S

wH(i, j) = valH(S)

hence, spectral sparsifier ⇒ cut sparsifier

12



Spectral sparsification

spectral sparsifier H is sparse subgraph of G such that
“quadratic forms” in Laplacian LH approximate those in LG:

xTLHx =
∑
i<j

wH(i, j)(xi − xj)
2 = (1 ± ϵ)xTLGx, ∀x ∈ Rn

e.g., if x = 1S for S ⊆ [n] then

xTLHx =
∑

i∈S,j/∈S

wH(i, j) = valH(S)

hence, spectral sparsifier ⇒ cut sparsifier

12



Spectral sparsification

spectral sparsifier H is sparse subgraph of G such that
“quadratic forms” in Laplacian LH approximate those in LG:

xTLHx =
∑
i<j

wH(i, j)(xi − xj)
2 = (1 ± ϵ)xTLGx, ∀x ∈ Rn

e.g., if x = 1S for S ⊆ [n] then

xTLHx =
∑

i∈S,j/∈S

wH(i, j) = valH(S)

hence, spectral sparsifier ⇒ cut sparsifier

12



Spectral sparsification
[Spielman-Teng ’04]: exists ϵ-spectral sparsifier with Õ(n/ϵ2) edges

→ building block of near-linear time algorithm
for solving Laplacian system LGx = b

= Gödel prize 2015

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-spectral sparsifier
in time Õ(n3/2/ϵ), which is optimal.

13



Spectral sparsification
[Spielman-Teng ’04]: exists ϵ-spectral sparsifier with Õ(n/ϵ2) edges

→ building block of near-linear time algorithm
for solving Laplacian system LGx = b

= Gödel prize 2015

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-spectral sparsifier
in time Õ(n3/2/ϵ), which is optimal.

13



Spectral sparsification
[Spielman-Teng ’04]: exists ϵ-spectral sparsifier with Õ(n/ϵ2) edges

→ building block of near-linear time algorithm
for solving Laplacian system LGx = b

= Gödel prize 2015

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-spectral sparsifier
in time Õ(n3/2/ϵ), which is optimal.

13



Spectral sparsification
[Spielman-Teng ’04]: exists ϵ-spectral sparsifier with Õ(n/ϵ2) edges

→ building block of near-linear time algorithm
for solving Laplacian system LGx = b

= Gödel prize 2015

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-spectral sparsifier
in time Õ(n3/2/ϵ), which is optimal.

13



Quantum speedup for Laplacian solving

1 construct ϵ-spectral sparsifier H
2 Classically solve Laplacian system LHx = b

= ϵ-approximate solution of LGx = b in time

Õ(n3/2/ϵ)

similarly, quantum speedups for spectral clustering, RW properties, . . .

14



Quantum speedup for Laplacian solving

1 construct ϵ-spectral sparsifier H

2 Classically solve Laplacian system LHx = b

= ϵ-approximate solution of LGx = b in time

Õ(n3/2/ϵ)

similarly, quantum speedups for spectral clustering, RW properties, . . .

14



Quantum speedup for Laplacian solving

1 construct ϵ-spectral sparsifier H
2 Classically solve Laplacian system LHx = b

= ϵ-approximate solution of LGx = b in time

Õ(n3/2/ϵ)

similarly, quantum speedups for spectral clustering, RW properties, . . .

14



Quantum speedup for Laplacian solving

1 construct ϵ-spectral sparsifier H
2 Classically solve Laplacian system LHx = b

= ϵ-approximate solution of LGx = b in time

Õ(n3/2/ϵ)

similarly, quantum speedups for spectral clustering, RW properties, . . .

14



Quantum speedup for Laplacian solving

1 construct ϵ-spectral sparsifier H
2 Classically solve Laplacian system LHx = b

= ϵ-approximate solution of LGx = b in time

Õ(n3/2/ϵ)

similarly, quantum speedups for spectral clustering, RW properties, . . .

14



Quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)

2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)

15



Matrix scaling

Input:
matrix A ∈ Rn×n

>0 , target marginals r, c ∈ Rn
>0

Goal:
find “rescaling”

XAY =

ex1 0
. . .

0 exn


︸ ︷︷ ︸

row rescaling

A

ey1 0
. . .

0 eyn


︸ ︷︷ ︸

column rescaling

such that XAY has row sums r and column sums c

Applications:
approximating matrix permanent, optimal transport in machine

learning, numerical linear algebra, . . .

16



Matrix scaling

Input:
matrix A ∈ Rn×n

>0 , target marginals r, c ∈ Rn
>0

Goal:
find “rescaling”

XAY =

ex1 0
. . .

0 exn


︸ ︷︷ ︸

row rescaling

A

ey1 0
. . .

0 eyn


︸ ︷︷ ︸

column rescaling

such that XAY has row sums r and column sums c

Applications:
approximating matrix permanent, optimal transport in machine

learning, numerical linear algebra, . . .

16



Matrix scaling

Input:
matrix A ∈ Rn×n

>0 , target marginals r, c ∈ Rn
>0

Goal:
find “rescaling”

XAY =

ex1 0
. . .

0 exn


︸ ︷︷ ︸

row rescaling

A

ey1 0
. . .

0 eyn


︸ ︷︷ ︸

column rescaling

such that XAY has row sums r and column sums c

Applications:
approximating matrix permanent, optimal transport in machine

learning, numerical linear algebra, . . .

16



Algorithms for matrix scaling

“folklore” classical algorithm:

complexity Õ(n2/ϵ) for ϵ-approximate solution
by iterative rescaling

[Sinkhorn ’64]

A → X1A︸︷︷︸
fix r

→ X1AY1︸ ︷︷ ︸
fix c

→ X2X1AY1︸ ︷︷ ︸
fix r

→ . . .

↓

quantum algorithm:

complexity Õ(n3/2/ϵ3) for ϵ-approximate solution
by Sinkhorn + quantum approximate counting

[van Apeldoorn-Gribling-Li-Nieuwboer-Walter-de Wolf ’21]

17



Algorithms for matrix scaling

“folklore” classical algorithm:

complexity Õ(n2/ϵ) for ϵ-approximate solution
by iterative rescaling

[Sinkhorn ’64]

A → X1A︸︷︷︸
fix r

→ X1AY1︸ ︷︷ ︸
fix c

→ X2X1AY1︸ ︷︷ ︸
fix r

→ . . .

↓

quantum algorithm:

complexity Õ(n3/2/ϵ3) for ϵ-approximate solution
by Sinkhorn + quantum approximate counting

[van Apeldoorn-Gribling-Li-Nieuwboer-Walter-de Wolf ’21]

17



Algorithms for matrix scaling

observation:
matrix scaling = convex optimization problem

f (x, y) =
∑

i,j

Ai,jexi+yj − rTx − cTy

∇f (x, y) = 0 ⇔ (x, y) describes rescaling

↓

Sinkhorn, Õ(n2/ϵ): first-order method

improved algorithm:
complexity Õ(n2 log(1/ϵ)) using second-order method

[Cohen-Mądry-Tsipras-Vladu ’17]

key tool: Hessian of f is Laplacian matrix
→ can use efficient Laplacian solving!

18



Algorithms for matrix scaling

observation:
matrix scaling = convex optimization problem

f (x, y) =
∑

i,j

Ai,jexi+yj − rTx − cTy

∇f (x, y) = 0 ⇔ (x, y) describes rescaling

↓

Sinkhorn, Õ(n2/ϵ): first-order method

improved algorithm:
complexity Õ(n2 log(1/ϵ)) using second-order method

[Cohen-Mądry-Tsipras-Vladu ’17]

key tool: Hessian of f is Laplacian matrix
→ can use efficient Laplacian solving!

18



Algorithms for matrix scaling

observation:
matrix scaling = convex optimization problem

f (x, y) =
∑

i,j

Ai,jexi+yj − rTx − cTy

∇f (x, y) = 0 ⇔ (x, y) describes rescaling

↓

Sinkhorn, Õ(n2/ϵ): first-order method

improved algorithm:
complexity Õ(n2 log(1/ϵ)) using second-order method

[Cohen-Mądry-Tsipras-Vladu ’17]

key tool: Hessian of f is Laplacian matrix
→ can use efficient Laplacian solving!

18



Algorithms for matrix scaling

observation:
matrix scaling = convex optimization problem

f (x, y) =
∑

i,j

Ai,jexi+yj − rTx − cTy

∇f (x, y) = 0 ⇔ (x, y) describes rescaling

↓

Sinkhorn, Õ(n2/ϵ): first-order method

improved algorithm:
complexity Õ(n2 log(1/ϵ)) using second-order method

[Cohen-Mądry-Tsipras-Vladu ’17]

key tool: Hessian of f is Laplacian matrix
→ can use efficient Laplacian solving!

18



Algorithms for matrix scaling

observation:
matrix scaling = convex optimization problem

f (x, y) =
∑

i,j

Ai,jexi+yj − rTx − cTy

∇f (x, y) = 0 ⇔ (x, y) describes rescaling

↓

Sinkhorn, Õ(n2/ϵ): first-order method

improved algorithm:
complexity Õ(n2 log(1/ϵ)) using second-order method

[Cohen-Mądry-Tsipras-Vladu ’17]

key tool: Hessian of f is Laplacian matrix
→ can use efficient Laplacian solving!

18



Algorithms for matrix scaling

complexity Õ(n2 log(1/ϵ)) using second-order method
[Cohen-Mądry-Tsipras-Vladu ’17]

? improved quantum algorithm for matrix scaling ?

[Gribling-Nieuwboer ’21]:
complexity Õ(n3/2/ϵ2) using second-order method

+ quantum sparsification and Laplacian solving

also, no quantum speedup for ϵ ≪ 1

19



Algorithms for matrix scaling

complexity Õ(n2 log(1/ϵ)) using second-order method
[Cohen-Mądry-Tsipras-Vladu ’17]

? improved quantum algorithm for matrix scaling ?

[Gribling-Nieuwboer ’21]:
complexity Õ(n3/2/ϵ2) using second-order method

+ quantum sparsification and Laplacian solving

also, no quantum speedup for ϵ ≪ 1

19



Algorithms for matrix scaling

complexity Õ(n2 log(1/ϵ)) using second-order method
[Cohen-Mądry-Tsipras-Vladu ’17]

? improved quantum algorithm for matrix scaling ?

[Gribling-Nieuwboer ’21]:
complexity Õ(n3/2/ϵ2) using second-order method

+ quantum sparsification and Laplacian solving

also, no quantum speedup for ϵ ≪ 1

19



Summary:

quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)
2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)

Future directions:

1) quantum speedup in interior point methods?
flagship problem = maximum flow (‘20-. . . )

2) continuous ↔ discrete trends also in sampling algorithms
e.g., logconcave sampling, estimating volume of convex bodies, . . .

20



Summary:

quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)
2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)

Future directions:

1) quantum speedup in interior point methods?
flagship problem = maximum flow (‘20-. . . )

2) continuous ↔ discrete trends also in sampling algorithms
e.g., logconcave sampling, estimating volume of convex bodies, . . .

20



Summary:

quantum algorithms for

1) cut sparsification and cut problems (‘90-‘00)
2) spectral sparsification and Laplacian solving (‘00-‘10)

3) matrix scaling and second-order methods (‘10-‘20)

Future directions:

1) quantum speedup in interior point methods?
flagship problem = maximum flow (‘20-. . . )

2) continuous ↔ discrete trends also in sampling algorithms
e.g., logconcave sampling, estimating volume of convex bodies, . . .

20


