A Quantum Algorithm for the Sub-Graph Isomorphism Problem

Nicola Mariella, Andrea Simonetto

IBM Research
February 10, 2022

Setting up the scene
 What can we expect from quantum optimization?

- The basic unit is the qubit and the concept of state
- The state is a unitary vector as $|\psi\rangle \in \mathbb{C}^{2^{n}}$, e.g., $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \alpha, \beta \in \mathbb{C}, \alpha^{2}+\beta^{2}=1$ and we can put it in superposition
- Quantum algorithms are quantum circuits (and in particular unitary matrices): $|\psi\rangle=U\left|\psi_{0}\right\rangle$
- The problem with quantum algorithms is to extract what we need (e.g., Grover search)
- Quantum optimization algorithms will design U to drive the state towards the desired solution

Demystifying

What can we expect from quantum optimization?

- Can it solve NP Hard problems in polynomial time?

Not likely

- BQP: Bounded error quantum polynomial,
- Suspected relationship
- Since we don't know NP vs. P, we don't know the rest too...

Demystifying
 What can we expect from quantum optimization?

- Can it solve NP Hard problems "better" (faster, ...) than classical algorithms?

Not likely soon: it's very hard to do!

Classically we are VERY good: In the last 25 years, algorithmic advances in integer optimization coupled with hardware improvements have resulted in a 800 billion factor speedup in mixed-integer optimization (25 years ago a problem that would have required 25 years to run, runs now in 1 ms).

We can solve 1000+ variable problems within minutes
Contrast with chemistry (only limited atoms !)

Demystifying
 What can we expect from quantum optimization?

- Quantum algorithms for optimization will offer novel heuristics for the solution of NP problems, that may (or not) give some advantage, with respect to classical algorithms.
- In terms of: speed/size
- In terms of: search space

QUBOs

Quadratic, unconstrained, binary optimization problems

$$
\min _{x \in\{0,1\}^{n}} x^{T} Q x
$$

- E.g., max-cut, soft-constrained travelling salesman, portfolio selection, etc..

QUBOs

Quadratic, unconstrained, binary optimization problems

$$
\min _{x \in\{0,1)^{n}} x^{T} Q x
$$

- Quantum: encode the problem into a circuit. In the VQE case, an Hamiltonian that encodes all the search space:
. $\{0,1\}^{n} \ni x \longrightarrow|\psi\rangle \in \mathbb{C}^{2^{n}} ; \quad H \in \mathbb{C}^{2^{n} \times 2^{n}} ; \quad \min _{x} x^{T} Q x \longrightarrow \min$ eig (H)
- (+) The encoding is straightforward
- (+) The basis vectors of $|\psi\rangle$ are the bitstrings of all the possible combinations

QUBOs

Quadratic, unconstrained, binary optimization problems

- Quantum: encode the problem into a circuit. In the VQE case, an Hamiltonian that encodes all the search space:
- $\{0,1\}^{n} \ni x \longrightarrow|\psi\rangle \in \mathbb{C}^{2^{n}} ; \quad H \in \mathbb{C}^{2^{n} \times 2^{n}} ; \quad \min x^{T} Q x \longrightarrow \min \operatorname{eig}(H)$ x
- Then design a trial function that probes the Hilbert space:
- $|\psi(\theta)\rangle=U(\theta)\left|\psi_{0}\right\rangle \longrightarrow \min _{x} x^{T} Q x \approx \min _{\theta \in \mathbb{R}^{D}}\langle\psi(\theta)| H|\psi(\theta)\rangle=\min _{\theta \in \mathbb{R}^{D}}\left\langle\psi_{0}\right| U(\theta) H U(\theta)\left|\psi_{0}\right\rangle$

VQE

Variational Quantum Eigensolver

- Example:

On quantum hardware

$$
\theta^{+}=\theta-\alpha \tilde{\mathbb{E}}\left[\nabla_{\theta}\left\langle\psi_{0}\right| U(\theta) H U(\theta)\left|\psi_{0}\right\rangle\right]
$$

On classical hardware

- Dimension D dictates approximation level and circuit depth
- This is a (classical) stochastic black-box, non-convex, continuous optimization problem (and NP-Hard)

VQE

Variational Quantum Eigensolver

- Strengths:
- one-fits-all scheme (see Qiskit optimization module)
- Can be extended (heuristically and with some acrobatics) to constrained problems, e.g. via operator splitting
- Can be extended to polynomial optimization (allowing high-order interconnection: careful here)
- It's insane (= non simulatable) classically (= complete enumeration of all feasible space)

VQE

Variational Quantum Eigensolver

- Strengths:
- It's insane (= non simulatable) classically (= complete enumeration of all feasible space)
- You are enumerating all the possibilities, put them in superposition and "trying them all at once". Then you scan the space by rotations...

$$
|\psi\rangle=\alpha_{0}|0000\rangle+\alpha_{1}|0001\rangle+\alpha_{2}|0010\rangle+\alpha_{3}|0011\rangle+\ldots+\alpha_{15}|1111\rangle
$$

VQE

Variational Quantum Eigensolver

- Weaknesses:
- Any advantage? Not clear at this point
- It scales terribly: e.g., in network problems if N is the number of vertices, then we need $n=\mathrm{O}\left(N^{2}\right)$ qubits
- Ex: for vehicle routing: Classically we are exact up to 250 vehicles, and approximate with guarantees till 1000+; quantum-ly, VQE offers tops 10 vehicles with an heuristic

The bigger picture: it's all about encoding

Big strokes in the sky

- Encode the problem in a quantum circuit
- Define the ansatz (parametric circuit) to probe the solution space
- Iterate: quantum/ classical

- VQE is not the right encoding, can we build better ones?

Finding clues in a specific problem

Sub-graph isomorphism problem/ Graph isomorphism problem

- Focus on the graph isomorphism for simplicity
- $\min _{P \in \Pi}\left\|P A P^{T}-B\right\|_{F}^{2}$

- A, B are the adjacency matrices of the graphs of dimension N, P is a permutation matrix
- The problem is finding permutations

Finding clues in a specific problem

Step 1: Encoding

- Encoding: define a transformation, that maps the adjacency matrices into unitary matrices as follows

Finding clues in a specific problem

Step 1: Encoding

- Such hat transformation requires $2 \log _{2}(N)+1=2 k+1$ qubits, with N the number of vertices (rem, QUBO requires $O\left(N^{2}\right)$)
- Proof:
$\operatorname{cexp}(h(A)) \in\{-1,1\}^{2 N^{2}}, \quad H^{\otimes n} \in \mathbb{U}\left(2^{n}\right), \quad \Longrightarrow n=2 \log _{2}(N)+1$
- And, $\hat{A} \in \mathbb{U}\left(2^{2 k+1}\right)$

Finding clues in a specific problem

Step 1: Encoding

Finding clues in a specific problem

Step 1: Encoding

- The hat transformation has a number of useful algebraic properties, from which, After some heavy algebra

Theorem

$$
\text { Let: } \check{P}=I_{2} \otimes\left(H^{\otimes 2 k} P^{\otimes 2} H^{\otimes 2 k}\right) \in \mathbb{U}\left(2^{2 k+1}\right)
$$

Then: $\quad P A P^{T}-B \equiv \check{P} \hat{A} \check{P}^{T} \hat{B}$

Finding clues in a specific problem

Step 1: Encoding

- The cost then, can be evaluated via a quantum circuit

- $\min _{P \in \Pi}\left\|P A P^{T}-B\right\|_{F}^{2} \quad \equiv \min _{P \in \Pi}\langle\psi| \check{P} \hat{A} \check{P}^{T} \hat{B}|\psi\rangle$

Finding clues in a specific problem

Step 2: Ansatz design

- Then, one design an ansatz (a parametric circuit, changeable by rotations) to search in the space of permutation matrices as such
- $\min _{P \in \Pi}\left\|P A P^{T}-B\right\|_{F}^{2} \quad \equiv \min _{P \in \Pi}\langle\psi| \check{\text { PhA }} \hat{P}^{T} \hat{B}|\psi\rangle \approx \min _{\theta \in \mathbb{R}^{D}}\langle\psi| \tilde{P}_{\theta} \hat{A} \tilde{P}_{\theta}^{T} \hat{B}|\psi\rangle$
- Then it's just SGD plus a quantum circuit evaluation !

Finding clues in a specific problem

Step 2: Ansatz design

- Our choice of design is $\tilde{P}_{\theta}=\prod_{i=1}^{D} R_{P_{i}}(\theta)$
- $R_{P_{i}}(\theta)$ are rotations about the permutation $P i$, and for which

$$
\prod_{i=1}^{D_{i}^{i}} R_{P_{i}}\left(m_{i} \pi\right)=\prod_{i=1}^{D} P_{i}^{m_{i}}, \quad m_{i} \in \mathbb{Z}
$$

- We span the permutation space with a permutation basis, and allowing for unfeasibility

Finding clues in a specific problem

Step 3: Quantum Algorithm

1. Initialize $\theta \in \mathbb{R}^{D}, \quad|\psi\rangle \in \mathbb{C}^{2^{2 k+1}}$ choose an ansatz \tilde{P}_{θ}
2. Quantum-part : Evaluate the cost/ gradient $\langle\psi| \tilde{P}_{\theta} \hat{A} \tilde{P}_{\theta}^{T} \hat{B}|\psi\rangle, \quad \tilde{\mathbb{E}}\left[\nabla_{\theta}\langle\psi| \tilde{P}_{\theta} \hat{A} \tilde{P}_{\theta}^{T} \hat{B}|\psi\rangle\right]$
3. Classical-part : SGD: $\theta^{+}=\theta-\gamma \tilde{\mathbb{E}}\left[\nabla_{\theta}\langle\psi| \tilde{P}_{\theta} \hat{A} \tilde{P}_{\theta}^{T} \hat{B}|\psi\rangle\right]$
4. Probabilistic rounding (in parallel, to map solution to actual permutations)

Finding clues in a specific problem

Sub-graph isomorphism problem/ Graph isomorphism problem

Finding clues in a specific problem

Sub-graph isomorphism problem/ Graph isomorphism problem

- (+) logarithmic scaling in the number of nodes: 100 qubit can encode a $O\left(10^{15}\right)$ node graph, vs. the best 1 M graph classically
- (-) the circuit depth is still proportional to the number of nodes and edges.. (link to the importance of good compilation!)
- (-) it is still an heuristic (dimension D)

Extensions?

It's all about algebra and well-played creativity

- It works similarly for max-cut problems
- Generalizations are still unknown
- Different encodings give rise to different building blocks for optimization
- Hat transformation seems to indicate to build quantum optimization from matrices and permutations...
- It's exciting: building optimization from the ground up

References

A good start

- N. Moll et al., Quantum optimization using variational algorithms on near-term quantum devices, 2017 [arXiv: 1710.01022]
- M. Rancic, An exponentially more efficient optimization algorithm for noisy quantum computers, 2021 [arXiv: 2110.10788]
- N. Mariella, A.S., A Quantum Algorithm for the Sub-Graph Isomorphism Problem, 2021 [arXiv: 2111.09732]

