A Quantum Algorithm for the Sub-Graph Isomorphism Problem

Nicola Mariella, Andrea Simonetto

February 10, 2022

IBM Research

Setting up the scene What can we expect from quantum optimization?

- The basic unit is the qubit and the concept of state
- The state is a unitary vector as $|\psi\rangle \in \mathbb{C}^{2^n}$, e.g., $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, $\alpha, \beta \in \mathbb{C}, \alpha^2 + \beta^2 = 1$ and we can put it in superposition
- Quantum algorithms are quantum circuits (and in particular unitary matrices): $|\psi\rangle = U |\psi_0\rangle$ The problem with quantum algorithms is to extract what we need (e.g., Grover search)

Quantum optimization algorithms will design U to drive the state towards the desired solution

Demystifying What can we expect from quantum optimization?

Can it solve NP Hard problems in polynomial time?

Not likely

- BQP: Bounded error quantum polynomial,
- Suspected relationship
- Since we don't know NP vs. P, we don't know the rest too...

Demystifying What can we expect from quantum optimization?

Can it solve NP Hard problems "better" (faster, ...) than classical algorithms?

Not likely soon: it's very hard to do!

speedup in mixed-integer optimization (25 years ago a problem that would have required 25 years to run, runs now in 1ms).

We can solve 1000+ variable problems within minutes

Contrast with chemistry (only limited atoms !)

- **Classically we are VERY good**: In the last 25 years, algorithmic advances in integer optimization coupled with hardware improvements have resulted in a <u>800 billion factor</u>

Demystifying What can we expect from quantum optimization?

- Quantum algorithms for optimization will offer novel heuristics for the to classical algorithms.
- In terms of: speed/size
- In terms of: search space

solution of NP problems, that may (or not) give some advantage, with respect

QUBOs Quadratic, unconstrained, binary optimization problems

• E.g., max-cut, soft-constrained travelling salesman, portfolio selection, etc..

 $\min_{x \in \{0,1\}^n} x^T Q x$

QUBOs Quadratic, unconstrained, binary optimization problems

n $x \in \{$

that encodes all the search space:

•
$$\{0,1\}^n \ni x \longrightarrow |\psi\rangle \in \mathbb{C}^{2^n}; \qquad H \in \mathbb{C}^{2^n \times 2^n}; \qquad \min_x x^T Q x \longrightarrow \min \operatorname{eig}(H)$$

- (+) The encoding is straightforward

$$\inf_{\{0,1\}^n} x^T Q x$$

Quantum: encode the problem into a circuit. In the VQE case, an Hamiltonian

• (+) The basis vectors of $|\psi\rangle$ are the bitstrings of all the possible combinations

QUBOs Quadratic, unconstrained, binary optimization problems

 Quantum: encode the problem into a circuit. In the VQE case, an Hamiltonian that encodes all the search space:

•
$$\{0,1\}^n \ni x \longrightarrow |\psi\rangle \in \mathbb{C}^{2^n};$$

- Then design a trial function that probes the Hilbert space:
- $|\psi(\theta)\rangle = U(\theta) |\psi_0\rangle \longrightarrow \min_x x^T Q x \approx \min_{\theta \in \mathbb{R}^D} \langle \psi(\theta) | H | \psi(\theta) \rangle = \min_{\theta \in \mathbb{R}^D} \langle \psi_0 | U(\theta) H U(\theta) | \psi_0 \rangle$

 $H \in \mathbb{C}^{2^n \times 2^n}; \qquad \min x^T Q x \longrightarrow \min \operatorname{eig}(H)$ $\boldsymbol{\chi}$

• Example:

$$\theta^+ = \theta - \alpha \tilde{\mathbb{E}}[\nabla_{\theta}$$

On classical hardware

- This is a (classical) stochastic black-box, non-convex, continuous optimization problem (and NP-Hard)

On quantum hardware $\theta \langle \psi_0 | U(\theta) HU(\theta) | \psi_0 \rangle$

Dimension D dictates approximation level and circuit depth

- Strengths:
 - one-fits-all scheme (see Qiskit optimization module)
 - Can be extended (heuristically and with some acrobatics) to constrained problems, e.g. via operator splitting
 - Can be extended to polynomial optimization (allowing high-order interconnection: careful here)
 - It's insane (= non simulatable) classically (= complete enumeration of all feasible space)

- Strengths:
 - It's insane (= non simulatable) classically (= complete enumeration of all feasible space)
 - You are enumerating all the possibilities, put them in the space by rotations...

superposition and "trying them all at once". Then you scan

 $|\psi\rangle = \alpha_0 |0000\rangle + \alpha_1 |0001\rangle + \alpha_2 |0010\rangle + \alpha_3 |0011\rangle + \dots + \alpha_{15} |1111\rangle$

- Weaknesses:
 - Any advantage? Not clear at this point
 - It scales terribly: e.g., in network problems if N is the number of vertices, then we need $n = O(N^2)$ qubits
 - Ex: for vehicle routing: Classically we are exact up to 250 vehicles, and approximate with guarantees till 1000+; quantum-ly, VQE offers tops 10 vehicles with an heuristic

The bigger picture: it's all about encoding **Big strokes in the sky**

- Encode the problem in a quantum circuit
- Define the ansatz (parametric circuit) to probe the solution space
- Iterate: quantum/ classical

• VQE is not the right encoding, can we build better ones?

$\min_{Y} f(x) \longrightarrow \min_{D} V(P) \approx \min_{O} V(P(\theta))$

Finding clues in a specific problem Sub-graph isomorphism problem/ Graph isomorphism problem

Focus on the graph isomorphism for simplicity

- min $\|PAP^T B\|_F^2$ $P \in \Pi$
- A, B are the adjacency matrices of the graphs of dimension N, P is a permutation matrix

3

• The problem is finding permutations

matrices into unitary matrices as follows

•
$$\hat{A} = H^{\otimes(2k+1)} \left(\mathbb{I}_{N^2} \oplus \sum_{i,j} (-1)^{A_{i,j}} |i,j\rangle \langle i,j| \right) H^{\otimes(2k+1)}$$

 $\operatorname{cexp}(h(A))$

Encoding: define a transformation, that maps the adjacency

- $O(N^2))$
- **Proof**:
- And, $\hat{A} \in \mathbb{U}(2^{2k+1})$

• Such hat transformation requires $2\log_2(N) + 1 = 2k + 1$ qubits, with N the number of vertices (rem, QUBO requires

$\operatorname{cexp}(h(A)) \in \{-1,1\}^{2N^2}, \quad H^{\otimes n} \in \mathbb{U}(2^n), \quad \Longrightarrow n = 2\log_2(N) + 1$

 The hat transformation has a number of useful algebraic properties, from which, After some heavy algebra

Theorem Let: $\check{P} = I_2 \otimes (H^{\otimes 2k} P^{\otimes 2k} H^{\otimes 2k}) \in \mathbb{U}(2^{2k+1})$ Then: $PAP^T - R = \check{P}\hat{A}\check{P}^T\hat{R}$

The cost then, can be evaluated via a quantum circuit

 $\min \|PAP^T - B\|_F^2 \equiv \min \langle \psi | \check{P} \hat{A} \check{P}^T \hat{B} | \psi \rangle$ $P \in \Pi$ $P \in \Gamma$

Finding clues in a specific problem **Step 2: Ansatz design**

- as such
- $\min_{P \in \Pi} \|PAP^T B\|_F^2 = \min_{P \in \Pi} \langle \psi_{P \in \Pi} \rangle$
- Then it's just SGD plus a quantum circuit evaluation !

• Then, one design an ansatz (a parametric circuit, changeable by rotations) to search in the space of permutation matrices

$$\psi |\check{P}\hat{A}\check{P}^T\hat{B}|\psi\rangle \approx \min_{\theta \in \mathbb{R}^D} \langle \psi | \tilde{P}_{\theta}\hat{A}\tilde{P}_{\theta}^T\hat{B}$$

Finding clues in a specific problem **Step 2: Ansatz design**

Our choice of design is $\tilde{P}_{\theta} = \prod R_{P_i}(\theta)$

- $R_{P_i}(\theta)$ are rotations about the permutation *Pi*, and for which D $\prod R_{P_i}(m_i\pi) = \prod P_i^{m_i}, \qquad m_i \in \mathbb{Z}$ i=1i=1
- We span the permutation space with a permutation basis, and allowing for unfeasibility

i=1

Finding clues in a specific problem **Step 3: Quantum Algorithm**

- 1. Initialize $\theta \in \mathbb{R}^D$, $|\psi\rangle \in$
- 2. <u>Quantum-part</u> : Evaluate the cost/ gradient $\langle \psi | \tilde{P}_{\theta} \hat{A} \tilde{P}_{\theta}^T \hat{B} | \psi \rangle, \quad \tilde{\mathbb{E}} [\nabla_{\theta} \langle \psi | \tilde{P}_{\theta} \hat{A} \tilde{P}_{\theta}^T \hat{B} | \psi \rangle]$
- permutations)

$$\mathbb{C}^{2^{2k+1}}$$
 choose an ansatz $ilde{P}_{ heta}$

3. <u>Classical-part</u> : SGD: $\theta^+ = \theta - \gamma \tilde{\mathbb{E}} [\nabla_{\theta} \langle \psi | \tilde{P}_{\theta} \hat{A} \tilde{P}_{\theta}^T \hat{B} | \psi \rangle]$

4. Probabilistic rounding (in parallel, to map solution to actual

Finding clues in a specific problem Sub-graph isomorphism problem/ Graph isomorphism problem

Finding clues in a specific problem Sub-graph isomorphism problem/ Graph isomorphism problem

- encode a $O(10^{15})$ node graph, vs. the best 1M graph classically
- (-) it is still an heuristic (dimension D)

• (+) logarithmic scaling in the number of nodes: 100 qubit can

 (-) the circuit depth is still proportional to the number of nodes and edges.. (link to the importance of good compilation!)

Extensions? It's all about algebra and well-played creativity

- It works similarly for max-cut problems
- Generalizations are still unknown

- matrices and permutations...
- It's exciting: building optimization from the ground up

Different encodings give rise to **different building blocks for optimization**

Hat transformation seems to indicate to build quantum optimization from

References A good start

- N. Moll et al., *Quantum optimization using variational algorithms on near-term quantum devices,* 2017 [arXiv: 1710.01022]
- M. Rancic, An exponentially more efficient optimization algorithm for noisy quantum computers, 2021 [arXiv: 2110.10788]
- N. Mariella, A.S., A Quantum Algorithm for the Sub-Graph Isomorphism Problem, 2021 [arXiv: 2111.09732]