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Setting up the scene
What can we expect from quantum optimization?

• The basic unit is the qubit and the concept of state


• The state is a unitary vector as 
and we can put it in 

superposition


• Quantum algorithms are quantum circuits (and in particular unitary matrices): 


• The problem with quantum algorithms is to extract what we need (e.g., Grover search)


• Quantum optimization algorithms will design U to drive the state towards the desired 
solution

|ψ⟩ ∈ ℂ2n, e.g.,  |ψ⟩ = α |0⟩ + β |1⟩, α, β ∈ ℂ, α2 + β2 = 1

|ψ⟩ = U |ψ0⟩
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• Can it solve NP Hard problems in polynomial time? 

• BQP: Bounded error quantum polynomial,


• Suspected relationship


• Since we don’t know NP vs. P, we don’t know the rest too… 

NP                        BQP

Demystifying 
What can we expect from quantum optimization?
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Not likely

P NP 
Complete

NP



• Can it solve NP Hard problems “better” (faster, …) than classical algorithms? 

Classically we are VERY good: In the last 25 years, algorithmic advances in integer 
optimization coupled with hardware improvements have resulted in a 800 billion factor 
speedup in mixed-integer optimization (25 years ago a problem that would have 
required 25 years to run, runs now in 1ms).  

We can solve 1000+ variable problems within minutes


Contrast with chemistry (only limited atoms !)

Demystifying 
What can we expect from quantum optimization?
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Not likely soon: it’s very hard to do!



• Quantum algorithms for optimization will offer novel heuristics for the 
solution of NP problems, that may (or not) give some advantage, with respect 
to classical algorithms. 


• In terms of: speed/size


• In terms of: search space

Demystifying 
What can we expect from quantum optimization?
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QUBOs
Quadratic, unconstrained, binary optimization problems

• 


• E.g., max-cut, soft-constrained travelling salesman, portfolio 
selection, etc.. 

min
x∈{0,1}n

xTQx
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QUBOs
Quadratic, unconstrained, binary optimization problems

• 


• Quantum: encode the problem into a circuit. In the VQE case, an Hamiltonian 
that encodes all the search space: 


• 


• (+) The encoding is straightforward


• (+) The basis vectors of  are the bitstrings of all the possible combinations 

min
x∈{0,1}n

xTQx

{0,1}n ∋ x ⟶ |ψ⟩ ∈ ℂ2n; H ∈ ℂ2n×2n; min
x

xTQx ⟶ min eig(H)

|ψ⟩
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QUBOs
Quadratic, unconstrained, binary optimization problems

• Quantum: encode the problem into a circuit. In the VQE case, 
an Hamiltonian that encodes all the search space: 


• 


• Then design a trial function that probes the Hilbert space: 

•

{0,1}n ∋ x ⟶ |ψ⟩ ∈ ℂ2n; H ∈ ℂ2n×2n; min
x

xTQx ⟶ min eig(H)

|ψ(θ)⟩ = U(θ) |ψ0⟩ ⟶ min
x

xTQx ≈ min
θ∈ℝD

⟨ψ(θ) |H |ψ(θ)⟩ = min
θ∈ℝD

⟨ψ0 |U(θ)HU(θ) |ψ0⟩
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VQE
Variational Quantum Eigensolver

• Example:


• 


• Dimension D dictates approximation level and circuit depth


• This is a (classical) stochastic black-box, non-convex, 
continuous optimization problem (and NP-Hard)  

θ+ = θ − α�̃�[∇θ⟨ψ0 |U(θ)HU(θ) |ψ0⟩]
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On quantum hardware

On classical hardware



VQE
Variational Quantum Eigensolver

• Strengths: 


• one-fits-all scheme (see Qiskit optimization module)


• Can be extended (heuristically and with some acrobatics) to 
constrained problems, e.g. via operator splitting 


• Can be extended to polynomial optimization (allowing high-order 
interconnection: careful here)


• It’s insane (= non simulatable) classically (= complete enumeration 
of all feasible space)
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VQE
Variational Quantum Eigensolver

• Strengths: 


• It’s insane (= non simulatable) classically (= complete 
enumeration of all feasible space)


• You are enumerating all the possibilities, put them in 
superposition and ``trying them all at once’’. Then you scan 
the space by rotations… 
|ψ⟩ = α0 |0000⟩ + α1 |0001⟩ + α2 |0010⟩ + α3 |0011⟩ + … + α15 |1111⟩
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VQE
Variational Quantum Eigensolver

• Weaknesses: 


• Any advantage? Not clear at this point 


• It scales terribly: e.g., in network problems if N is the number 
of vertices, then we need n = O( ) qubits 


• Ex: for vehicle routing: Classically we are exact up to 250 
vehicles, and approximate with guarantees till 1000+; 
quantum-ly, VQE offers tops 10 vehicles with an heuristic

N2
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The bigger picture: it’s all about encoding
Big strokes in the sky

• Encode the problem in a quantum circuit


• Define the ansatz (parametric circuit) to probe the solution 
space


• Iterate: quantum/ classical


• 


• VQE is not the right encoding, can we build better ones? 

min
x

f(x) ⟶ min
P

V(P) ≈ min
θ

V(P(θ))

13



Finding clues in a specific problem
Sub-graph isomorphism problem/ Graph isomorphism problem

• Focus on the graph isomorphism for simplicity


• 


• A, B are the adjacency matrices of the graphs of dimension N, P is a 
permutation matrix


• The problem is finding permutations

min
P∈Π

∥PAPT − B∥2
F
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Finding clues in a specific problem
Step 1: Encoding

• Encoding: define a transformation, that maps the adjacency 
matrices into unitary matrices as follows


• ̂A =
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Finding clues in a specific problem
Step 1: Encoding

• Such hat transformation requires  
qubits, with N the number of vertices (rem, QUBO requires 

) 


• Proof: 
 

• And, 

2 log2(N) + 1 = 2k + 1

O(N2)

cexp(h(A)) ∈ {−1,1}2N2, H⊗n ∈ 𝕌(2n), ⟹ n = 2 log2(N) + 1

̂A ∈ 𝕌(22k+1)
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Finding clues in a specific problem
Step 1: Encoding

17



Finding clues in a specific problem
Step 1: Encoding

• The hat transformation has a number of useful algebraic 
properties, from which, After some heavy algebra


Theorem 

Let: 
P̌ = I2 ⊗ (H⊗2kP⊗2H⊗2k) ∈ 𝕌(22k+1)

Then:  PAPT − B ≡ P̌ ̂AP̌TB̂
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Finding clues in a specific problem
Step 1: Encoding

• The cost then, can be evaluated via a quantum circuit


• min
P∈Π

∥PAPT − B∥2
F ≡ min

P∈Π
⟨ψ | P̌ ̂AP̌TB̂ |ψ⟩
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Finding clues in a specific problem
Step 2: Ansatz design

• Then, one design an ansatz (a parametric circuit, changeable 
by rotations) to search in the space of permutation matrices 
as such


• 


• Then it’s just SGD plus a quantum circuit evaluation ! 

min
P∈Π

∥PAPT − B∥2
F ≡ min

P∈Π
⟨ψ | P̌ ̂AP̌TB̂ |ψ⟩ ≈ min

θ∈ℝD
⟨ψ | P̃θ

̂AP̃T
θ B̂ |ψ⟩
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Finding clues in a specific problem
Step 2: Ansatz design

• Our choice of design is 


•  are rotations about the permutation Pi, and for which 




• We span the permutation space with a permutation basis, and 
allowing for unfeasibility 

P̃θ =
D

∏
i=1

RPi
(θ)

RPi
(θ)

D

∏
i=1

RPi
(miπ) =

D

∏
i=1

Pmi
i , mi ∈ ℤ
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Finding clues in a specific problem
Step 3: Quantum Algorithm

1. Initialize  choose an ansatz 


2. Quantum-part : Evaluate the cost/ gradient 



3. Classical-part : SGD:  


4. Probabilistic rounding (in parallel, to map solution to actual 
permutations) 

θ ∈ ℝD, |ψ⟩ ∈ ℂ22k+1 P̃θ

⟨ψ | P̃θ
̂AP̃T

θ B̂ |ψ⟩, �̃�[∇θ⟨ψ | P̃θ
̂AP̃T

θ B̂ |ψ⟩]

θ+ = θ − γ�̃�[∇θ⟨ψ | P̃θ
̂AP̃T

θ B̂ |ψ⟩]
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Finding clues in a specific problem
Sub-graph isomorphism problem/ Graph isomorphism problem
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Finding clues in a specific problem
Sub-graph isomorphism problem/ Graph isomorphism problem

• (+) logarithmic scaling in the number of nodes: 100 qubit can 
encode a  node graph, vs. the best 1M graph 
classically 


• (-) the circuit depth is still proportional to the number of nodes 
and edges.. (link to the importance of good compilation!)


• (-) it is still an heuristic (dimension D) 

O(1015)
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Extensions? 
It’s all about algebra and well-played creativity

• It works similarly for max-cut problems


• Generalizations are still unknown


• Different encodings give rise to different building blocks for optimization 

• Hat transformation seems to indicate to build quantum optimization from 
matrices and permutations… 


• It’s exciting: building optimization from the ground up 
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