Parallélisation des algorithmes de points intérieurs pour la programmation linéaire Journées en l'honneur de Pierre Huard

Nelson Maculan¹ Luiz Carlos da Costa Jr¹ Fernanda Sousa Thomé¹ Geraldo Veiga²

¹COPPE – Université Fédérale de Rio de Janeiro, Brésil

 ${}^{2}\mathcal{R}^{n}$ Ciência e Tecnologia

24 et 25 novembre 2008

Outline

- 1 A Brief History of Computational Linear Programming
 - Pioneers
 - The Simplex Method
 - The Ellipsoid Method
 - Interior Point Methods
- 2 Implementation of Interior Point Methods
 - Dual-Affine Algorithm
 - Primal-Dual Algorithm with infeasibilities
- 3 Parallelization of an Interior Point Method
 - Direct Factorization Methods
- 4 Parallelization strategies
- 5 Experimenting with MUMPS
- 6 Case study
- 7 Conclusion and future work
- 8 References
- 9 Matlab/Octave implementation

Parallel LP

A Brief History of Computational Linear Programming

└─ Pioneers

Brief History of Computational LP - Pioneers

- Pas loin d'ici: Fourier (1826) studies the properties of system of linear inequalities
- De la Vallée-Poussin (1911) develops an iterative procedure for linear minimax estimation which can be adjusted to solve linear optimization problems (Farebrother, 2006)
- Kantorovich (1939) proposes rudimentary algorithm for linear programming applied to production planning
- These contributions only come to attention after independent development of linear programming theory and the Simplex Method

A Brief History of Computational Linear Programming

└─ The Simplex Method

Brief History of Computational LP - Simplex Method I

- Early works by Leontief, von Neumann and Koopsman directly influenced the theoretical development of linear programming (Dantzig, 2002)
- Exponential behavior in theory Almost linear in practice
- Designed "to be computable", developed side-by-side with digital computers (Dantzig, 2002)
- Orchard-Hays (1954) produces first successful LP software
- Sparse matrix representation and product-form of the inverse
- Largest problem solved: 26 x 71 solved in 8 hours (Bixby, 2002)
- Large scale methods: Dantzig-Wolfe and Benders decomposition

A Brief History of Computational Linear Programming

└─ The Simplex Method

Brief History of Computational LP - Simplex Method II

- Sparse LU representation of the basis with Bartel-Golub/Forrest-Tomlin/Fletcher-Matthews updates.
- More recent linear algebra improvements such as Markowitz threshold and sparse partial pivoting (Bixby, 2002)
- Modern implementations: CPLEX, Xpress and open source Glpk
- Parallel implementations of the simplex method usually exploits special structures
- A general approach hindered by the changing sparse pattern of the basic matrix
- The Ellipsoid Method (Khachiyan, 1979)
- Revolutionary for complexity theory without computational impact

A Brief History of Computational Linear Programming

└─ Interior Point Methods

Brief History of Computational LP - Interior Point I

- Karmarkar's algorithm (Karmarkar, 1984)
 - Projective algorithm with a potential function sets a lower complexity for linear programming: \$\mathcal{O}(n^{3.5}L)\$
 - Claims of great performance gains for a dual-affine scaling variant (Adler et al., 1989a)
 - Similar algorithm had gone unnoticed by LP researchers (Dikin, 1967)
- Primal-Dual/Path Following methods
 - New wave of interest in linear programming reintroduces path-following methods developed in the nonlinear context: Logarithm Barrier Function (Fiacco and McCormick, 1968) and Method of Centers (Huard, 1967)
 - Central trajectory methods with lower complexity $O(n^3L)$
 - Primal/Dual infeasible methods become standard for implementation, included in leading LP software.

Dual-Affine Algorithm

Affine-Dual Algorithm

• c, x n-vectors; A $m \times n$ matrix; b, y m-vectors

$$\max \{ b^\top x \mid A^\top y \leq c \}$$

Add slack variables

$$\max \{ b^\top x \mid A^\top y + v = c, \ v \ge 0 \}$$

Scaling transformation

$$\hat{v} = D_v^{-1} v$$
 where $D_v = \text{diag}(v_1^k, \dots, v_m^k)$

Projected gradient as search direction

$$h_y = (AD_v^{-2}A^{\top})^{-1}b$$
 and $h_v = -A^{\top}h_y$

◆ロト ◆昼 → ◆ 臣 ト ◆ 臣 - ● ● ● ●

Dual-Affine Algorithm

Affine-Dual Algorithm II

1 procedure dualAffine (A, b, c, y^0 , stopping criterion, γ) **2** k := 0: **3 do** stopping criterion not satisfied \rightarrow $v^k := c - A^\top v^k$: 4 $D_{v} := \operatorname{diag}(v_{1}^{k}, \ldots, v_{m}^{k});$ 5 $h_{v} := (AD_{v}^{-2}A^{\top})^{-1}b;$ 6 $h_{v} := -A^{\top}h_{v}$ 7 if $h_{\rm V} > 0 \rightarrow$ return fi: 8 $\alpha := \gamma \times \min\{-v_i^k / (h_v)_i \mid (h_v)_i < 0, i = 1, \dots, m\};$ 9 $\mathbf{y}^{k+1} := \mathbf{y}^k + \alpha \mathbf{h}_{\mathbf{y}};$ 10 k := k + 1: 1112 od end dualAffine

Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities I

- Formulation:
 - Upper bounds for a subset of variables
 - *c*, *x*, *s*, *z* are *n*-vectors
 - u_b , x_b , s_b , w_b n_b -vectors x_n , s_n n_n -vectors
 - $A \ m \times n$ matrix b, y m-vectors
- Add slack variables

min {
$$c^{\top}x \mid Ax = b, x_b + s_b = u_b, x \ge 0, s_b \ge 0$$
}

$$\max \{ b^\top y - u_b^\top w_b \mid A_b^\top y - w_b + z_b = c_b, A_n^\top y + z_n = c_n, w_b \ge 0, z \ge 0 \}$$

・ロト ・ 語 ト ・ 語 ト ・ 語 ・ うへぐ

Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities II

- $X = \operatorname{diag}(x)$, $S = \operatorname{diag}(s)$, $W = \operatorname{diag}(w)$, $Z = \operatorname{diag}(z)$
- μ Central trajectory parameter
- Karush-Kuhn-Tucker conditions:

$$Ax = b$$

$$x_b + s_b = u_b$$

$$A_b^\top y - w_b + z_b = c_b$$

$$A_n^\top y + z_n = c_n$$

$$XZe = \mu\epsilon$$

$$S_b W_b e = \mu\epsilon$$

$$x, s_b, w_b, z > 0$$

Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities III

System of equations with primal and dual infeasibilities

$$A\Delta x^{k} = -(Ax^{k} - b) = r_{p}^{k}$$

$$\Delta x_{b}^{k} + \Delta s_{b}^{k} = -(x_{b}^{k} + s_{b}^{k} - u_{b}) = r_{u}^{k}$$

$$A_{b}^{\top}\Delta y^{k} - \Delta w_{b}^{k} + \Delta z_{b}^{k} = -(A_{b}^{\top}y^{k} + z_{b}^{k} - w_{b}^{k} - c_{b}) = (r_{d}^{k})_{b} = 0$$

$$A_{n}^{\top}\Delta y^{k} + \Delta z_{n}^{k} = -(A_{n}^{\top}y^{k} + z_{n}^{k} - c_{n}) = (r_{d}^{k})_{n}$$

$$Z^{k}\Delta x^{k} + X^{k}\Delta z^{k} = -(X^{k}Z^{k}e - \mu_{k}e) = r_{xz}^{k}$$

$$W_{b}^{k}\Delta s_{b}^{k} + S_{b}^{k}\Delta w_{b}^{k} = -(W_{b}^{k}S_{b}^{k}e - \mu_{k}e) = (r_{sw}^{k})_{b}$$

< ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0

Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities IV

Normal Equations

$$A\Theta^k A^ op \Delta y^k = ar b$$

where

$$\Theta^{k} = \begin{bmatrix} (Z_{b}^{k}(X_{b}^{k})^{-1} + W_{b}^{k}(S_{b}^{k})^{-1})^{-1} & 0\\ 0 & (Z_{n}^{k})^{-1}X_{n}^{k} \end{bmatrix}$$

$$\begin{split} \bar{b} &= r_{\rho}^{k} + A_{b} \Theta_{b}^{k} ((r_{d}^{k})_{b} + (S_{b}^{k})^{-1} (r_{sw}^{k} - W_{b} r_{u}^{k}) - (X_{b}^{k})^{-1} r_{xz}^{k}) \\ &+ A_{n} \Theta_{n}^{k} ((r_{d}^{k})_{n} - (X_{n}^{k})^{-1} r_{xz}^{k}) \end{split}$$

Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities V

 Other search direction computed without substantial computational effort

$$\begin{aligned} \Delta x_b^k &= \Theta_b^k A_b^\top \Delta y^k - \Theta_b^k ((r_d^k)_b + (S_b^k)^{-1} (r_{sw}^k - W_b r_u^k) - (X_b^k)^{-1} (r_{xz}^k)_b) \\ \Delta x_n^k &= \Theta_n^k A_n^\top \Delta y^k - \Theta_n^k ((r_d^k)_n - (X_n^k)^{-1} (r_{xz}^k)_n) \\ \Delta s_b^k &= r_u^k - \Delta x_b^k \\ \Delta z^k &= (X^k)^{-1} (r_{xz} - Z^k \Delta x^k) \\ \Delta w_b^k &= A_b^\top \Delta y^k + \Delta z_b^k \end{aligned}$$

・ロト・日本・モート モー うへぐ

Direct Factorization Methods

Parallelization opportunities in Interior Point Direct Factorization I

 Main computational step common to all variants is the solutions of a system of normal equations

$$A\Theta^k A^ op \Delta y^k = ar b$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- Examining an implementation in Matlab/Octave, potentially computationally expensive steps:
- Computing system matrix

 $\mathsf{B} \,=\, \mathsf{A}* \texttt{sparse}\,(\,\texttt{diag}\,(\,\mathsf{d}\,)\,)*\mathsf{A}\,`;$

Custom parallel sparse linear algebra

Direct Factorization Methods

Parallelization opportunities in Interior Point Direct Factorization II

Example: BandM from the Netlib collection

Direct Factorization Methods

Parallelization opportunities in Interior Point Direct Factorization III

Order for sparsity

ordering = symamd(B);

■ Reordering for sparsity: Matrix *AA*^T and Cholesky factors without ordering (Adler et al., 1989b)

└─ Direct Factorization Methods

Parallelization opportunities in Interior Point Direct Factorization IV

■ Matrix AA^T and Cholesky factors after minimum degree ordering

Figure 6. Nonzero pattern of AA^{T} after ordering (*minimum degree* ordering heuristic).

Figure 7. Nonzero pattern of LU factors after ordering (minimum degree ordering heuristic).

Parallelization opportunities in Interior Point Direct Factorization V

- Reordering rows of A to avoid fill-in
- Optimal ordering is *NP-Complete* (Yannakakis, 1981)
- Linear solvers compute the ordering during the Analyse step, based solely on the matrix sparsity pattern
- Performed only once in interior point algorithms, sparsity pattern are identical for all iterations
- Parallel/Distributed MPI based implementations available: ParMETIS

Parallelization opportunities in Interior Point Direct Factorization VI

Direct Cholesky factorization

R = chol(B(ordering, ordering));

- Repeated at every iteration, consumes most of the computational effort
- For larger problems: Main parallelization target
- Chart displaying the portion of the algorithm running time for Netlib problems, suggesting a increase with size
- Available Parallel/Distributed implementations: MUMPS (Amestoy et al., 2000) for distributed memory architectures and PARDISO for shared memory

Parallelization of an Interior Point Method

Direct Factorization Methods

Parallelization opportunities in Interior Point Direct Factorization VII

Triangular Solution for rhs

dy(ordering) = $R \setminus (R' \setminus bbar(ordering));$

- General sparse linear algebra parallelization
- In distributed implementations, parallelization implied by Factorization step

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Direct Factorization Methods

Parallelization opportunities in Interior Point Direct Factorization VIII

Parallelization strategies

- MPI: Message Passing/Distributed Memory
 - Standard for high-performance computing
 - Processors operate with private memory spaces, sharing results of only through point-to-point or collective communication
 - Goals are high performance, scalability and portability
 - \blacksquare Bindings for Fortran and C/C++
 - Target architectures are both high performance computer clusters tightly linked with fast switched interconnects and grids of loosely-coupled systems
- Shared memory multiprocessing
 - Multiple computing threads operate in shared memory space
 - Programming standards: OpenMP and Pthreads (Posix threads)
 - Suited for multi-core processor architectures
- Hybrid model of parallel programming use multi-core MPI nodes executing shared memory threads

Experimenting with MUMPS

Experimenting with MUMPS

- Multifrontal Massively Parallel Solver MUMPS (Amestoy) et al., 2000) for distributed memory architectures
- Multifrontal methods first build an assembly tree
- At each node, a dense submatrix (frontal matrix) is assembled using data from the original matrix and from the children of the node
- Main source of parallelism consists in simultaneously assigning same level frontal matrices onto separate processors
- MUMPS uses standard linear algebra libraries BLAS, BLACS, ScaLAPACK
- BLAS functions can use shared memory parallelism, depending on implementation
- Experiments with Netlib collection unsuccessful due to small size, but suggest better performance as problems grow

Experimenting with MUMPS

Multifrontal assembly trees for two orderings

▲□▶▲圖▶▲厘▶▲厘▶ = 更 - のへで

Experimenting with MUMPS

Experiments with Netlib problems

500

э

Power system expansion planning model

- Linear relaxation of mixed integer planning model for the expansion of a combined hydro and thermal power system
- Formulated with Optgen© modeling tool, developed by PSR
- Problem instance generated with Brazilian system of 280 hydro and 120 thermal plants
- LP size: 840285 columns, 598066 rows and 2462627 nonzeros entries

 Interior Point linear system: 360455 rows and 27390204 nonzeros

Par	allel	LP	
	Case	stud	ŀ

Case Study Experiment

- Experiment solves one typical system from an interior point iteration
- SGI Altix ICE 8200 with 64 quad-Core Intel Xeon CPU and 512 Gbytes of distributed RAM, using a Infiniband interconnect
- Software infrastructure: MUMPS 4.8.3 with BLAS, BLACS, ScaLAPACK provided by Intel MKL 10.1
- MUMPS is successful in low-scale parallelization
- Times for the Analyze stage comparable
- Total computation is dominated by matrix-matrix multiplication
- Shared memory parallelism using OpenMP in the BLAS and Lapack routines has little effect in this architecture

MUMPS Speedup

Conclusion and future work

Conclusion and future work

- Large-scale problems using implementations with direct factorization can profit from parallelization, but less than expected
- Parallelization still an art form: No assurance of performance, too dependent on the infrastructure and algorithms
- MUMPS and other MPI-based tools are designed for high performance clusters
- Multi-core workstations are a better suited for shared memory parallelization
- Other sources of parallelism must be addressed
- Experiments with iterative methods for solving interior point linear systems
- Full implementation of the primal-dual algorithm for HPC environment

Paral	lel	LΡ

References

References I

- Adler, N. Karmarkar, M. Resende, and G. Veiga. An implementation of Karmarkar's algorithm for linear programming. *Mathematical Programming*, 44:297–335, 1989a. doi: 10.1007/BF01587095. URL http://citeseer.ist.psu.edu/173633.html.
- Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga. Data structures and programming techniques for the implementation of Karmarkar's algorithm for linear programming. ORSA J. Computing, 1(2):84–106, 1989b. doi: 10.1007/BF01587095. URL http://citeseer.ist.psu.edu/adler89data.html.
- P. R. Amestoy, I. S. Duff, and J. Y. L'Excellent. Multifrontal parallel distributed symmetric and unsymmetric solvers. Computer Methods in Applied Mechanics and Engineering, 184:501–520, 2000. doi: 10.1016/S0045-7825(99)00242-X.
- Robert E. Bixby. Solving real-world linear programs: A decade and more of progress. Oper. Res., 50(1):3–15, 2002. ISSN 0030-364X. doi: http://dx.doi.org/10.1287/opre.50.1.3.17780.
- George B. Dantzig. Linear programming. Oper. Res., 50(1):42–47, 2002. ISSN 0030-364X. doi: 10.1287/opre.50.1.42.17798.
- C.J. de la Vallée-Poussin. Sur la méthode de l'approximation minimum. Ann. Soc. Sci. Bruxelles, 35:1-16, 1911.
- I. Dikin. Iterative solution of problems of linear and quadratic programming. Soviet Mathematics Doklady, 8: 674–675, 1967.
- Richard William Farebrother. A linear programming procedure based on de la vallée poussin's minimax estimation procedure. Computational Statistics & Data Analysis, 51(2):453–456, 2006. doi: 10.1016/j.csda.2005.10.005.
- A.V. Fiacco and G.P. McCormick. Nonlinear programming: Sequential unconstrained minimization technique. John Wiley and Sons, New York, 1968.

Parallel	LP
Refe	rences

References II

- J. B. J. Fourier. Solution d'une question particulière du calcul des inégalités. Nouveau Bulletin des Sciences par la Société Philomatique de Paris, pages 99–100, 1826. reprinted: G. Olms, Hildesheim, 1970, pp. 317-319.
- P. Huard. Resolution of mathematical programming with nonlinear constraints by the method of centers, pages 209–219. North-Holland, Amsterdam, 1967.
- L. V. Kantorovich. Mathematical methods of organizing and planning production. Management Sciences, 6: 366-422, 1939. English translation of the Russian original published in 1939 by the Publication House of the Leningrad State University.
- N. Karmarkar. New polynomial-time algorithm for linear programming. Combinatorica, 4:373–395, 1984. doi: 10.1007/BF02579150.
- L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics Doklady, 20:1979, 1979.

イロト 不得 トイヨト イヨト 一日 うらつ

M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J Alg Disc Meth, 2:77-79, 1981.

```
function [x,y,s,w,z,fp,fd] = pdBounds(A,b,c,u,ub)
1
2
    %
3
    % Version: 2008-07-15
4
    %
5
    % Primal—dual interior—point method for problems with equality constraints,
6
    % bounded and unbounded variables
7
    %
8
    % Primal: min \{c'x \mid Ax = b, x(ub) + s(ub) = u(ub), x, s(ub) \ge 0\}
9
    % Dual: max\{b'y - u'(ub)w(ub) \mid A'y - w(ub) + z = c, w \ge 0, z \ge 0\}
10
    %
11
    % input: A - m x n sparse constraint matrix
12
    %
              b = m \times 1 resource vector
13
    %
             c – n x 1 cost vector
    %
14
             u = n \times 1 bounds vector
    %
15
              ub - n \times 1 vector (maximum dimension) with indices of bounded variables
16
    %
17
    % output: x - n x 1 vector of primal solutions
18
    %
               y - m \times 1 vector of dual solutions for equality constraints
19
    %
               s - n \times 1 vector of primal slacks (defined for indices in ub only)
20
    %
               w - n \times 1 vector of dual solutions for upper-bound constraints
    %
21
               z = n \times 1 vector of dual slacks
22
    %
               fp - primal objective value
23
    %
               fd – dual objective value
24
    %
25
    % Internal parameters:
26
    %
               itmax - Maximum number of iterations in algorithm
27
    %
               tol - Convergence tolerance
28
    %
               tolzro - Tolerance to zero
```

Matlab/Octave implementation

```
29
    %
               x0fac - Factor for computing minimum entry in x0
30
    %
               max_diag - Maximum diagonal element allowed
31
    %
               min_eta - Minimum safety factor in step
32
    %
33
34
    % Check input arguments
35
    if nargin = 5
36
      error ( 'pdBounds: _ Missing _arguments _ __5_ required ');
37
    end
38
39
    if (~issparse(A)) error('pdBounds:_Matrix_A_is_not_sparse'); end
40
    [m,n] = size(A);
    if (m \le 0 | | n \le 0)
41
42
      error('pdBounds:_Matrix_A_must_be_nontrivial');
43
    end
    if (n = length(c))
44
      error('pdBounds: size_of_vector_c_must_match_number_of_columns_in_A'):
45
46
    end
    if (m = length(b))
47
48
      error('pdBounds: _size_of_vector_b_must_match_number_of_rows_in_A'):
49
    end
50
    if (n = length(u))
      error('pdBounds:_size_of_vector_u_must_match_number_of_columns_in_A'):
51
52
    end
53
54
    % Build Indices for bounded and unbounded variables
55
    nub = setdiff([1:n], ub);
56
    n_u b = size(ub, 2); n_n b = n - n_u b;
57
```

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

```
58
    % Precompute norms
59
     \operatorname{nrm}_{b} = \operatorname{norm}(b, 2); \operatorname{nrm}_{c} = \operatorname{norm}(c, 2); \operatorname{nrm}_{c} = \operatorname{norm}(c(ub), 2);
     if(n_ub > 0)
60
61
       nrm_u = norm(u(ub), 2);
62
     else
63
       nrm_u = 0:
64
     end
65
66
    % Set internal parameters
67
    itmax = 100:
                                          % Maximum number of iterations in algorithm
68
     tol = 1.e-8;
                                          % Convergence tolerance
69
     tolzro = 1.e-20;
                                          % Tolerance to zero
     x0fac = 10:
                                          % Factor computing minimum entry in x0
70
71
     max_diag = 1.e+20;
                                          % Maximum diagonal element allowed
72
     min_eta = .9995;
                                          % Minimum safety factor in step
73
74
    % Start CPU clock
75
     ts=cputime;
76
77
    % Initialize arrays and variables
78
     x = zeros(n,1); s = zeros(n,1); w = zeros(n,1); z = zeros(n,1);
79
     rd = zeros(n,1); ru = zeros(n,1); rxz = zeros(n,1); rsw = zeros(n,1); dx = zeros(n,1);
80
     ds = zeros(n,1); dw = zeros(n,1); dz = zeros(n,1); tn = zeros(n,1);
81
    y = zeros(m, 1); dy = zeros(m, 1); rp = zeros(m, 1); tm = zeros(m, 1); mu = 0;
82
83
    % Find minimum degree ordering for a sparse Cholesky factorization of ADA'
84
    B = A*A'; ordering = symamd(B);
85
86
    % Compute initial primal solution
```

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

```
87
     R = chol(B(ordering, ordering));
88
      if(n_ub > 0)
89
        bbar = 2*b - A(:, ub)*u(ub);
90
        tm(ordering) = R \setminus (R' \setminus bbar(ordering));
91
        x(ub) = .5*(A(:,ub)'*tm + u(ub));
92
        minx0 = max(norm(x(ub), inf)/x0fac, nrm_u/x0fac);
93
        x(ub) = max(minx0, \dot{x}(ub));
94
        s(ub) = u(ub) - x(ub);
95
        s(ub) = max(minx0, s(ub));
        i\hat{f}(n_ub > 0)
96
97
          x(nub) = .5*(A(:,nub)'*tm);
98
          minx0 = max(norm(x(nub), inf)/x0fac, nrm_b/x0fac);
          x(nub) = max(minx0.x(nub));
99
100
        end
101
      else
102
        tm(ordering) = R \setminus (R' \setminus b(ordering));
103
        x = A' * tm:
104
        minx0 = max(norm(x, inf)/x0fac, nrm_b/x0fac);
        x = max(minx0.x):
105
106
     end
107
108
     % Set initial dual interior solution
109
      z = ones(n,1) / x; z = (max(1,nrm_c)/norm(z,2)) * z;
110
      if(n_ub > 0)
111
       w(ub) = ones(n_ub, 1) / s(ub); w(ub) = (max(1, nrm_cb) / norm(w(ub), 2)) * w(ub);
112
     end
113
     y = zeros(m, 1);
114
115
     % Main algorithm loop
```

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

Matlab/Octave implementation

```
116
117
     for iter = 0:itmax
118
119
       % Adjust dual slacks for bounded variables to force zero dual residual
120
       if(n_ub > 0)
121
          rd(ub) = c(ub) - A(:, ub)' * v - z(ub) + w(ub):
122
       end
123
       for i = ub
124
          if(rd(i) > 0)
125
            z(i) = z(i) + rd(i);
126
          elseif(rd(i) < 0)
127
            w(i) = w(i) - rd(i);
128
         end
129
          rd(i)=0;
130
       end
131
132
       % Compute current primal and dual objective values
       fp = c' * x; fd = b' * y;
133
134
       if(n_ub > 0)
135
          \hat{f}d = fd - u(ub)' * w(ub):
136
       end
137
138
       % Compute current primal, dual and complementarity residuals
139
       rp = b - A*x; nrm_rp = norm(rp,2)/max(1,nrm_b);
140
       rd = c - A' * y - z;
       if(n_ub > 0)
141
142
          rd(ub) = rd(ub) + w(ub);
143
       end
144
       nrm_rd = norm(rd_2)/max(1, nrm_c):
```

```
145
146
       if(n_ub > 0)
          ru(ub) = u(ub) - x(ub) - s(ub); nrm_ru = norm(ru(ub),2)/max(1,nrm_u);
147
148
          rsw(ub) = s(ub) \cdot *w(ub); nrm_rsw = norm(rsw(ub), 2);
149
       else
150
          nrm_ru = 0: nrm_rsw = 0:
151
       end
152
       rxz = x.*z; nrm_rxz = norm(rxz,2);
153
154
       % Compute trajectory parameter
155
       if(n_ub > 0)
         mu = full((sum(rxz) + sum(rsw))/(n + n_ub));
156
157
       else
158
         mu = full(sum(r \times z)/n);
159
       end
160
       % Print iteration report
161
162
        fprintf(1,'lteration_%3i:_mu=_%15.8e,_fp=_%13.8e,_fd=_%13.8e\n', iter, full(mu), fp, f
163
       fprintf(1, 'Residuals: _{rp=_{u}}%15.8e, _{rd=_{u}}%13.8e, _{ru=_{u}}%13.8e\n', nrm_rp, nrm_rd, nrm_ru);
164
       fprintf(1, '_____rxz=_%13.8e, _rsw=_%13.8e\n', nrm_rxz, nrm_rsw);
165
166
       % Test for convergence
       if(abs(fp-fd)/max(1,abs(fd)) < tol & nrm_rp < tol & nrm_rd < tol & nrm_ru < tol)</pre>
167
168
         break;
169
       end
170
171
       % Choose target trajectory parameter and adjust residuals
172
       sigma = min(0.1, 100 * mu);
173
       rxz = sigma * mu * ones(n,1) - rxz:
```

```
174
       if(n_ub > 0)
175
          rsw(ub) = sigma*mu*ones(n_ub, 1) - rsw(ub);
176
       end
177
178
       % Compute scaling matrix and coefficient matrix for normal equations
179
       if(n_ub > 0)
180
         d(ub) = min(max_diag, ones(n_ub, 1)./(z(ub)./x(ub) + w(ub)./s(ub)));
181
       end
182
       if(n_nub > 0)
183
         d(nub) = min(max_diag, x(nub), /z(nub));
184
       end
185
       B = A*sparse(diag(d))*A';
186
187
       % Cholesky factorization of normal equations
188
       R = chol(B(ordering, ordering));
189
190
       % Compute rhs for normal equations
191
       bbar = rp;
192
       if(n_ub > 0)
193
          tn(ub) = diag(d(ub))*(rd(ub) + (rsw(ub)-w(ub),*ru(ub)),/s(ub) - rxz(ub),/x(ub));
194
       end
195
       if(n_n b > 0)
196
          tn(nub) = diag(d(nub))*(rd(nub) - rxz(nub),/x(nub));
197
       end
198
       bbar = bbar + A*tn:
199
200
       % Solve the normal equations system for dy and recover dx, ds, dw, dz
201
       dy(ordering) = R \setminus (R' \setminus bbar(ordering));
202
       dx = diag(d)*(A'*dy) - tn:
```

```
203
       dz = (rxz - z.*dx)./x;
204
       if(n_ub > 0)
205
          ds(ub) = ru(ub) - dx(ub);
206
         dw(ub) = A(:, ub)' * dy + dz(ub);
207
       end
208
209
       % Compute maximum feasible step
210
       alphax = ratioTest(x, dx, tolzro);
211
        if(n_ub > 0)
212
          alphas = ratioTest(s(ub), ds(ub), tolzro);
213
          alphap = min(alphax, alphas);
214
       else
215
          alphap = alphax:
216
       end
217
       if (isinf(alphap))
218
          error('Extreme_ray_found_in_primal_problem'):
219
       end
220
221
       alphaz = ratioTest(z, dz, tolzro);
222
       if(n_ub > 0)
223
          alphaw = ratioTest(w(ub),dw(ub),tolzro);
224
          alphad = min(alphaz, alphaw);
225
       else
226
          alphad = alphaz;
227
       end
228
       if (isinf(alphad))
229
         % Check for dual unbounded solution
230
          error('Extreme_ray_found_in_dual_problem');
231
       end
```

```
232
233
       % Update solution
234
       eta = max(min_eta, 1 - mu);
       x = x + eta * alphap * dx;
235
236
       y = y + eta * alphad * dy;
237
       z = z + eta * alphad * dz:
238
       if(n_ub > 0)
239
         s(ub) = s(ub) + eta * alphap * ds(ub);
240
         w(ub) = w(ub) + eta * alphad * dw(ub);
241
       end
242
     end
243
244
     fprintf('Total_CPU_time_=_%g\n', cputime_ts);
245
     fprintf(1, 'Problem_size: _%i_X_%i, _%i_bounded, _%i_nonzeros, _rank_%i\n', size(A), n_ub, nr
     fprintf(1, '____%i_nonzero_elements_in_AAT\n', nnz(A*A'));
246
     fprintf(1, '_____%i_nonzero_elements_in_LU_factors \n', (2*nnz(R)-m));
247
248
     return:
249
     end
250
251
     function alpha = ratioTest(x, dx, tolzro)
252
     %
253
     % Returns the maximum step for x and direction dx
254
     % ---
255
       alpha = inf('double');
256
       for i = 1 : length(x)
257
         if (dx(i) < -to|zro)
258
           alpha = min(alpha, -x(i)/dx(i));
259
         end
260
       end
```

Matlab/Octave implementation

261 end