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Semidefinite Programming

The CONVEX optimization problem:

P → min
x ∈Rn

{ c′ x |
n∑

i=1

Ai xi � b},

is called a semidefinite program with DUAL:

P∗ → max
Y ∈Sm

{ 〈b , Y 〉 | Y � 0; 〈Ai ,Y 〉 = ci , i = 1, . . . ,n}

• c ∈ Rn and b,Ai , Y ∈ Sm (m ×m symmetric matrices)

• Y � 0 means Y semidefinite positive; 〈A,B〉 = trace (AB).
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P and its dual P∗ are convex problems that are solvable in
polynomial time to arbitrary precision ε > 0.
= generalization to the convex cone S+

m (X � 0) of Linear
Programming on the convex polyhedral cone Rm

+ (x ≥ 0).

Several academic SDP software packages exist, (e.g. MATLAB
“LMI toolbox”, SeduMi, SDPT3, ...). However, so far, size
limitation is more severe than for LP software packages.
Pioneer contributions by A. Nemirovsky, Y. Nesterov, N.Z. Shor,
B.D. Yudin,...
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Consider the 0/1 polynomial optimization problem

P : f ∗ = min { f(x) : x ∈ K; x ∈ {0,1}n}

where K ⊂ Rn is the basic semi-algebraic set

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}

for some polynomials (f,gj) ⊂ R[x].

Semidefinite-relaxations
One may define a hierarchy of semidefinite relaxations with
optimal value f ∗k such that f ∗k ↑ f ∗ as k →∞. In fact finite
convergence takes place and f ∗k = f ∗ for every k ≥ k0.

Moreover, .... practice seems to reveal that in general,
convergence is fast ..
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However .....

The size of the k -th semidefinite relaxation grows like O(nk )
and in view of the present status of SDP-solvers, only the first
(sometimes the second) relaxation can be implemented,
providing only a lower bound f ∗k on f ∗!

So .... an important issue is:
How can we use the result of the k -th semidefinite relaxation to
help obtain a (good) feasible solution for problem P?

Example: After solving the first semidefinite relaxation (k = 1),
the randomized rounding procedure for MAXCUT provides an
approximate solution with guaranteed performance!
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The underlying idea

Let Y := {0,1} and let y ∈ Y, fixed:

Consider the y -parametric optimization problem

J(y) = min
x
{ f(x) : x ∈ K; x ∈ {0,1}n; x1 = y}

i.e., problem P where the variable x1 is fixed at the value y

Of course ...

f ∗ = min
y
{J(y) : y ∈ Y }
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Suppose that one has an approximation Jk : Y→ R such that
Jk (y)→ ρ(y) as k →∞.

Then .... a (likely) reasonable strategy is:

• Select x1 := 0 if Jk (0) < Jk (1) and select x1 := 1 otherwise!

• repeat with the (n − 1)-variable 0/1 problem:

P(x1) : min{ f(x) : x ∈ K; x ∈ {0,1}n; x1 = x1}

and its associated y -parametric optimization problem:

J(y) = min
x
{ f(x) : x ∈ K; x ∈ {0,1}n; x1 = x1; x2 = y}

i.e., problem P where the variable x1 is fixed at the value x1,
and the variable x2 is fixed at the value y ∈ Y.

• etc. until one obtains x ∈ {0,1}n.
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Features

For problems where feasibility is easy to determine (e.g.,
MAXCUT, k -cluster, 0/1-knapsack, ...), one ends up with a
feasible x ∈ {0,1}n.
To compute Jk (y) one does NOT need to solve 2
semidefinite relaxations to get Jk (0) AND Jk (1) as in a
Branch and Bound procedure. It suffices to compute the
k -th semidefinite relaxation associated with P, with k
additional linear constraints!
An optimal solution of the dual provides us with the
function y 7→ Jk (y), a linear polynomial λ0 + λ1y .
and so one selects x1 = 0 if λ1 > 0 and x1 = 1 otherwise.
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The same approach can be done with a block of s
parameters (y1, . . . , ys) ∈ Y := {0,1}s. To compute
Jk (y1, . . . , ys), one only needs to solve ONE k -th
semidefinite relaxation with O(s2k ) additional linear
constraints instead of solving 2s semidefinite relaxations!
The function (y1, . . . ys) 7→ Jk (y1, . . . , ys) is a (square free)
polynomial of degree s.

Jk (y1, . . . ys) = λ0 +
s∑

i=1

λi y i +
∑

1≤i<j≤s

λij y iy j + · · ·

Select (x1, . . . , xs) ∈ {0,1}s that minimizes Jk on Y by
inspection of the corresponding 2s values of Jk .
Repeat with the (n − s)-variable problem P(x1, , . . . , xs) :

min
x
{ f(x) : x ∈ K; x ∈ {0,1}n; xk = xk , k = 1, . . . , s}

and associated (ys+1, . . . , y2s)-parametric problem, etc.
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Parametric Optimization

Let Y ⊂ Rp be a compact set, called the parameter set.

Let K ⊂ Rn × Rp be the set:

K := { (x,y) : y ∈ Y ; hj(x,y) ≥ 0, j = 1, . . . ,m },

for some continuous functions hj : Rn × Rn → R.

Consider the following optimization problem:

J(y) := inf
x
{ f (x,y) : x ∈ Ky},

where for each y ∈ Y, the Ky ⊂ Rn is defined by:

Ky := {x ∈ Rn : (x,y) ∈ K }

Jean B. Lasserre



Parametric optimization is concerned with:

• the global optimal value function y 7→ J(y), and

• the global minimizer set function y 7→ x∗i (y)

• the optimal dual multiplier set function y 7→ λ∗j (y) associated
with the constraint hj(x,y) ≥ 0.

In general, getting full information is impossible, and one is
satisfied with local information (e.g. sensitivity analysis) around
some (even local) minimizer x∗(y) ∈ Ky, y ∈ Y. (See e.g. the
book by Bonnans and Shapiro.)

However ...
For polynomial optimization much more is possible!
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The "joint+marginal" approach

Let ϕ be a Borel probability measure on Y, with a positive
density with respect to the Lebesgue measure on the smallest
affine variety that contains Y. For instance,

ϕ(B) :=

(∫
Y

dy
)−1 ∫

B
dy, ∀B ∈ B(Y),

is uniformly distributed on Y.

For a discrete set of parameters Y (finite or countable) take for
ϕ a discrete probability measure on Y with strictly positive
weight at each point of the support.

Sometimes, e.g. in the context of optimization with data
uncertainty, ϕ is already specified.
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A related infinite-dimensional linear program:

Consider the infinite-dimensional LP:

P : ρ := inf
µ∈M(K)

{∫
K

f dµ : πµ = ϕ

}
where: M(K) is the of Borel probability measures on K, and

π : M(K)→ M(Y) is the projection (or, marginal) on Y.

Whence the name "joint+marginal"-approach since:

- µ is a joint distribution on the variables x AND the parameters
y.
- ϕ is the marginal of µ on Y (fixed, as a constraint on µ).
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The dual P∗ is the infinite-dimensional LP:

P∗ : ρ∗ := sup
g ∈C(Y)

∫
Y

g(y) dϕ(y)

f (x,y)− g(y) ≥ 0 ∀(x,y) ∈ K.

where C(Y) is the set of continuous functions on Y.

In other words, among the continuous functions g on Y such
that:

f (x,y) ≥ g(y) ∀x ∈ Ky,

one searches for the one that maximizes
∫

Y gdϕ.
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Why those LPs?

We assume that K is compact.

As we shall see ....
Any optimal solution µ∗ of the primal P encodes all information
on the optimal solutions x∗(y) of Py.

Similarly ....
There is no duality gap ρ = ρ∗ and so, in particular, the optimal
value function y 7→ J(y) of Py can be nicely approximated by
polynomials.
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Theorem (The primal side ...)

Assume that K is compact and Ky 6= ∅ for every y ∈ Y. Let

X∗y := {x ∈ Rn : f (x,y) = J(y)}, y ∈ Y. Then:

(a) ρ =

∫
Y

J(y) dϕ(y) and P has an optimal solution.

(b) For every optimal solution µ∗ of P, and for ϕ-almost all
y ∈ Y, there is a probability measure ψ∗(dx |y) on Rn,
concentrated on X∗y, such that:

µ∗(C × B) =

∫
B
ψ∗(C |y) dϕ(y), ∀B ∈ B(Y), C ∈ B(Rn).
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continued ...
(c) Assume that for ϕ-almost all y ∈ Y, the set of minimizers X∗y
is the singleton {x∗(y)} for some x∗(y) ∈ Ky. Then there is a
measurable mapping g : Y→ Ky such that

g(y) = x∗(y) for every y ∈ Y ; ρ =

∫
Y

f (g(y),y) dϕ(y),

and for every α ∈ Nn, and β ∈ Np:∫
K

xαyβ dµ∗(x,y) =

∫
Y

yβ g(y)α dϕ(y).
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Theorem (The dual side ...)
(a) There is no duality gap, i.e.,

ρ = ρ∗ =

∫
Y

J(y) dϕ(y),

(b) One may use polynomials of R[y] to approximate ρ∗.

(c) Let (pi) ⊂ R[y] be any maximizing sequence. Then:
L1-norm convergence:

as i →∞,
∫

Y
|J(y)− pi(y) |dϕ(y) → 0

ϕ-almost sure convergence: Let p̃i := maxk=0,..,i pi . Then

as i →∞, p̃i → J ϕ-almost surely in Y

Jean B. Lasserre



Polynomial Parametric Optimization

In general, P and P∗ are intractable!

However .... when:
- Y and K, are basic semi-algebraic sets, and:
- either one already knows the moments of ϕ, or Y is simple
enough (e.g. a box, a simplex, a hyper-sphere) so that they can
be computed.

.... then one can approximate the optimal value ρ of P, and:

• The optimal value mapping y 7→ J(y)
• The global minimizer mapping y 7→ x∗(y),

... via the hierarchy of semidefinite relaxations
adapted from the moment-s.o.s. approach in polynomial
optimization.
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More details in:

The "joint+marginal" approach for parametric optimization

SIAM J. Optim. 20 (2010).
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A "joint+marginal" algorithm for 0/1 optimization

With K ⊂ Rn being the basic semi-algebraic set

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}

Consider the 0/1 polynomial optimization problem

P : f ∗ = min { f(x) : x ∈ K; x ∈ {0,1}n}

and its associated y -parametric optimization problem:

ρ(y) = min
x
{ f(x) : x ∈ K; x ∈ {0,1}n; x1 = y}
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The moment-s.o.s. approach

Let Nn
i := {α ∈ Nn :

∑
j αj ≤ i}.

With a sequence z = (zα), indexed in the canonical basis (xα)
of R[x ], let Lz : R[x ]→ R be the linear mapping:

f (=
∑
α

fαxα) 7→ Lz(f ) :=
∑
α

fα zα, f ∈ R[x ].

The moment matrix Mi(z)

associated with a sequence z = (zα), has its rows and columns
indexed in the canonical basis (xα), and with entries.

Mi(z)(α, β) = Lz(xα xβ) = zα+β,

for every α, β ∈ Np
i
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Let q be the polynomial x 7→ q(x) :=
∑

u qu xu.

The localizing matrix Mi(q, z) associated with

q ∈ R[x ] and a sequence z = (zα), has its rows and columns
indexed in the canonical basis (xα), and with entries.

Mi(q z)(α, β) = Lz(q(x)xα xβ) =
∑
u∈Nn

qu zα+β+u

for every α, β ∈ Nn
i .
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Primal semidefinite relaxations:

Let vj := d(deg gj)/2e] for every j = 1, . . . ,m and let
i0 := max[d(deg f )/2e,maxj vj ].

For k ≥ i0, consider the semidefinite program:

ρk = inf
z

Lz(f )

s.t. Mk (z) � 0
Mk−vj (gj z) � 0, j = 1, . . . ,m
Lz(xα) = Lz(x1α>0), ∀ |α| ≤ 2k
Lz(1) = 1
Lz(x1) = 1/2

where 1α>0 = (1α1>0, . . . ,1αn>0). (Comes from xi
2 = xi , ∀i).

ρi0 ≤ · · · ≤ ρk ≤ · · · ≤ ρ.
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Dual semidefinite relaxation

The dual reads:

ρ∗k = sup
λ,(σi )

λ0 + λ1/2

s.t. f (x)− (λ0 + λ1 x1) = σ0(x) +
m∑

j=1

σj(x) gj(x), ∀x

σj ∈ Σ[x ], j = 1, . . . ,m
degσjgj ≤ 2k , j = 1, . . . ,m

Set y 7→ Jk (y) := λk
0 + λk

1 y for an optimal solution (λk
0, λ

k
1, σ

k
j ),

and observe that, and observe that

λk
0 + λk

1/2 =

∫
Y

Jk (y) dϕ(y) =

∫
{0,1}

Jk (y) dϕ(y).

with ϕ({0}) = 1/2 and ϕ({1}) = 1/2.
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Theorem
Consider the dual semidefinite relaxations. Then:

(a) ρ∗k ↑ ρ as k →∞.

(b) Let (λk
0, λ

k
1, σ

k
j ) be an optimal solution. Then:

Jk (0) = λk
0 ≤ J(0) and Jk (1) = λk

0 + λk
1 ≤ J(1).

Moreover, as k →∞,

Jk (0) = λk
0 → J(0) and Jk (1) = λk

0 + λk
1 → J(1).

In fact, finite convergence takes place!
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Hence .. if k is suffciently large,

λk
1 > 0 ⇒ x∗1 = 0 and λk

1 < 0 ⇒ x∗1 = 1

in any optimal solution x∗ of P!

... which provides a rationale for the following

"joint+marginal" algorithm for 0/1 optimization
While i < n repeat:

Consider the 0/1 problem P(x1, . . . , xi−1) which is P where
the first i − 1 components of x are already fixed.
Solve the k -th semidefinite relaxation with parameter xi
associated with P(x1, . . . , xi−1), and get an optimal solution
(λk

0, λ
k
1, σ

k
j ) of the dual.

If λk
1 > 0 set xi = 0 and xi = 1 otherwise.

If P(x1, . . . , xi−1, xi) has a feasible solution select xi := xi
and xi := 1− xi otherwise.
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The rationale behind the "joint+marginal" algorithm:

The larger k , the better the approximation of J(y) by the
univariate polynomial Jk (y) = λk

0 + λk
1y . And so in

minimizing Jk (y) over Y one has a good chance to obtain
x1 ≈ x∗1 , where x∗ is a global minimizer of P. And so at the
end one may expect x ≈ x∗.
But ... the interest is to precisely have k not too large so as
to handle relatively large size problems.
Preliminary results are encouraging!
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EX: MAX-CUT problem: max xT Ax : x ∈ {−1, 1}n}
• Y = {−1,1}, and let ϕ({1}) = ϕ({−1} = 1/2.
•We fix k = 1. The semidefinite program

Q1 :


max trace(A X )

s.t.
(

1 x ′

x X

)
� 0

Xii = 1, i = 1, . . . ,n

is the first semidefinite relaxation of P (with celebrated
Goemans & Williamson performance garantee).
• The 1-th parametric semidefinite relaxation reads:

ρ1 = max trace(A X )

s.t.
(

1 x ′

x X

)
� 0

Xii = 1, i = 1, . . . ,n
x1 = 1/2

which is Q1 with ONE additional constraint x1 = 1/2.
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We have tested the "joint+marginal" algorithm on a sample of
50 and 100 randomly generated MAXCUT instances with
n = 20,30 and 40 nodes in the corresponding graph. An arc
(i , j) is generated with probability 1/2. and Aij is generated
according to a uniform distribution on [0,10].
Let P1 be the values of the solution generated by the
"joint+marginal" algorithm.

n 20 30 40

(P1 −Q1)/|Q1| 10.3% 12.3% 12.5%

Table: Relative error for MAXCUT

†We implemented the "max-gap" variant which instead of
selecting x1, then x2, etc. selects first the variable xi with
maximum gap |J1(−1)− J1(1)|, etc.

Jean B. Lasserre



We have tested the "joint+marginal" algorithm on a sample of
50 and 100 randomly generated MAXCUT instances with
n = 20,30 and 40 nodes in the corresponding graph. An arc
(i , j) is generated with probability 1/2. and Aij is generated
according to a uniform distribution on [0,10].
Let P1 be the values of the solution generated by the
"joint+marginal" algorithm.

n 20 30 40

(P1 −Q1)/|Q1| 10.3% 12.3% 12.5%

Table: Relative error for MAXCUT

†We implemented the "max-gap" variant which instead of
selecting x1, then x2, etc. selects first the variable xi with
maximum gap |J1(−1)− J1(1)|, etc.

Jean B. Lasserre



0/1 knapsack problem

P : max
x

{
n∑

i=1

ci xi :
n∑

i=1

ai xi ≤ b ; x ∈ {0,1}n
}

The first semidefinite relaxation of P is:

Q1 :


max trace(A X )

s.t.
(

1 x ′

x X

)
� 0

Xii = 1, i = 1, . . . ,n∑n
i=1 ai xi ≤ b

For the 1-th parametric semidefinite relaxation it suffices to add
the linear constraint x1 = 1/2.
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One may even add the n redundant constraints:

x`

[
n∑

i=1

ai xi − b

]
≤ 0 ` = 1, . . . ,n,

which read

n∑
i=1

ai X`i − b x` ≤ 0 ` = 1, . . . ,n,
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We have tested the "joint+marginal" algorithm on a sample of
problems with n = 40 and n = 50 variables where:

• b =
∑

i ai/2, and the integers ai ’s are generated uniformly in
[10,100].

• The vector c is generated by: ci = s ∗ ε+ ai with
s = 0.1,1,5,10 and ε is a random variable uniformly distributed
in [0,1].
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s 0.1 1 5 10

(P1 −Q1)/|Q1| 2.5% 1.42% 1.5%

Table: Relative error for 0/1 KNAPSACK: n = 40

s 0.1 1 5 10

(P1 −Q1)/|Q1| 1.86% 1.42% 0.7% 0.08%

Table: Relative error for 0/1 KNAPSACK: n = 50
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k -cluster problem

P : max
x

{
n∑

i=1

x′Ax :
n∑

i=1

xi = k ; x ∈ {0,1}n
}

where A ∈ Rn×n is real symmetric matrix associated with a
graph. The first semidefinite relaxation of P is:

Q1 :


max trace(A X )

s.t.
(

1 x ′

x X

)
� 0

Xii = 1, i = 1, . . . ,n∑n
i=1 xi = k

For the 1-parametric semidefinite relaxation it suffices to add
the linear constraint x1 = 1/2.
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One may even add the n redundant constraints:

x`

[
n∑

i=1

xi − k

]
= 0 ` = 1, . . . ,n,

which read

n∑
i=1

X`i − k x` = 0 ` = 1, . . . ,n,
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We have tested the "joint+marginal" algorithm on a sample of
problems with n = 40 nodes, with k = n/2 and where an arc
(i , j) is generated with probability 1/2. and Aij is generated
according to a uniform distribution on [0,10].

On 4 problems we observed an average relative error
(P1 −Q1)/|Q1| of less than 5%.
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THANK YOU !!

Jean B. Lasserre


