A "joint+marginal" algorithm for 0/1 optimization

Jean B. Lasserre

LAAS-CNRS and Institute of Mathematics, Toulouse, France

Journées FRO, Paris, March 2010

- Semidefinite Programming
- The "joint+marginal" approach
- Parametric Optimization
- Application to 0/1 optimization
- Some experiments on MAXCUT, k-cluster, Knapsack.
- Semidefinite Programming
- The "joint+marginal" approach
- Parametric Optimization
- Application to 0/1 optimization
- Some experiments on MAXCUT, k-cluster, Knapsack.
- Semidefinite Programming
- The "joint+marginal" approach
- Parametric Optimization
- Application to 0/1 optimization
- Some experiments on MAXCUT, k-cluster, Knapsack.
- Semidefinite Programming
- The "joint+marginal" approach
- Parametric Optimization
- Application to 0/1 optimization
- Some experiments on MAXCUT, k-cluster, Knapsack.
- Semidefinite Programming
- The "joint+marginal" approach
- Parametric Optimization
- Application to 0/1 optimization
- Some experiments on MAXCUT, k-cluster, Knapsack.

Semidefinite Programming

The CONVEX optimization problem:

$$
\mathbf{P} \quad \rightarrow \quad \min _{x \in \mathbb{R}^{n}}\left\{c^{\prime} x \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq b\right\}
$$

is called a semidefinite program with DUAL:

Semidefinite Programming

The CONVEX optimization problem:

$$
\mathbf{P} \quad \rightarrow \quad \min _{x \in \mathbb{R}^{n}}\left\{c^{\prime} x \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq b\right\}
$$

is called a semidefinite program with DUAL:

$$
\mathbf{P}^{*} \quad \rightarrow \quad \max _{Y \in \mathcal{S}_{m}}\left\{\langle b, Y\rangle \mid \quad Y \succeq 0 ;\left\langle A_{i}, Y\right\rangle=c_{i}, \quad i=1, \ldots, n\right\}
$$

- $c \in \mathbb{R}^{n}$ and $b, A_{i}, Y \in \mathcal{S}_{m}(m \times m$ symmetric matrices)
- $Y \succeq 0$ means Y semidefinite positive; $\langle A, B\rangle=\operatorname{trace}(A B)$.
\mathbf{P} and its dual \mathbf{P}^{*} are convex problems that are solvable in polynomial time to arbitrary precision $\epsilon>0$.
$=$ generalization to the convex cone $\mathcal{S}_{m}^{+}(X \succeq 0)$ of Linear
Programming on the convex polyhedral cone $\mathbb{R}_{+}^{m}(x \geq 0)$.

> Several academic SDP software packages exist, (e.g. MATLAB "LMI toolbox", SeduMi, SDPT3, ...). However, so far, size limitation is more severe than for LP software packages. Pioneer contributions by A. Nemirovsky, Y. Nesterov, N.Z. Shor, B.D. Yudin,...
\mathbf{P} and its dual \mathbf{P}^{*} are convex problems that are solvable in polynomial time to arbitrary precision $\epsilon>0$.
$=$ generalization to the convex cone $\mathcal{S}_{m}^{+}(X \succeq 0)$ of Linear Programming on the convex polyhedral cone $\mathbb{R}_{+}^{m}(x \geq 0)$.

Several academic SDP software packages exist, (e.g. MATLAB "LMI toolbox", SeduMi, SDPT3, ...). However, so far, size limitation is more severe than for LP software packages. Pioneer contributions by A. Nemirovsky, Y. Nesterov, N.Z. Shor, B.D. Yudin,...
\mathbf{P} and its dual \mathbf{P}^{*} are convex problems that are solvable in polynomial time to arbitrary precision $\epsilon>0$.
$=$ generalization to the convex cone $\mathcal{S}_{m}^{+}(X \succeq 0)$ of Linear
Programming on the convex polyhedral cone $\mathbb{R}_{+}^{m}(x \geq 0)$.

Several academic SDP software packages exist, (e.g. MATLAB "LMI toolbox", SeduMi, SDPT3, ...). However, so far, size limitation is more severe than for LP software packages. Pioneer contributions by A. Nemirovsky, Y. Nesterov, N.Z. Shor, B.D. Yudin,...

Consider the 0/1 polynomial optimization problem

$$
\mathbf{P}: \quad f^{*}=\min \left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{K} ; \mathbf{x} \in\{0,1\}^{n}\right\}
$$

where $K \subset \mathbb{R}^{n}$ is the basic semi-algebraic set

$$
\mathbf{K}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geq 0, j=1, \ldots, m\right\}
$$

for some polynomials $\left(\mathbf{f}, g_{j}\right) \subset \mathbb{R}[\mathbf{x}]$.

Semidefinite-relaxations

One may define a hierarchy of semidefinite relaxations with optimal value f_{k}^{*} such that $f_{k}^{*} \uparrow f^{*}$ as $k \rightarrow \infty$. In fact finite convergence takes place and $f_{k}^{*}=f^{*}$ for every $k \geq k_{0}$.

Consider the 0/1 polynomial optimization problem

$$
\mathbf{P}: \quad f^{*}=\min \left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{K} ; \mathbf{x} \in\{0,1\}^{n}\right\}
$$

where $K \subset \mathbb{R}^{n}$ is the basic semi-algebraic set

$$
\mathbf{K}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geq 0, j=1, \ldots, m\right\}
$$

for some polynomials $\left(\mathbf{f}, g_{j}\right) \subset \mathbb{R}[\mathbf{x}]$.

Semidefinite-relaxations

One may define a hierarchy of semidefinite relaxations with optimal value f_{k}^{*} such that $f_{k}^{*} \uparrow f^{*}$ as $k \rightarrow \infty$. In fact finite convergence takes place and $f_{k}^{*}=f^{*}$ for every $k \geq k_{0}$.

Moreover, practice seems to reveal that in general, convergence is fast ..

However

The size of the k-th semidefinite relaxation grows like $O\left(n^{k}\right)$ and in view of the present status of SDP-solvers, only the first (sometimes the second) relaxation can be implemented, providing only a lower bound f_{k}^{*} on f^{*} !

So an important issue is:

Example: After solving the first semidefinite relaxation $(k=1)$, the randomized rounding procedure for MAXCUT provides an approximate solution with

However

The size of the k-th semidefinite relaxation grows like $O\left(n^{k}\right)$ and in view of the present status of SDP-solvers, only the first (sometimes the second) relaxation can be implemented, providing only a lower bound f_{k}^{*} on f^{*} !

> So an important issue is:
> How can we use the result of the k-th semidefinite relaxation to help obtain a (good) feasible solution for problem \mathbf{P} ?

Example: After solving the first semidefinite relaxation $(k=1)$ the randomized rounding procedure for MAXCUT provides an approximate solution with

However

The size of the k-th semidefinite relaxation grows like $O\left(n^{k}\right)$ and in view of the present status of SDP-solvers, only the first (sometimes the second) relaxation can be implemented, providing only a lower bound f_{k}^{*} on f^{*} !

> So an important issue is:
> How can we use the result of the k-th semidefinite relaxation to help obtain a (good) feasible solution for problem \mathbf{P} ?

Example: After solving the first semidefinite relaxation $(k=1)$, the randomized rounding procedure for MAXCUT provides an approximate solution with guaranteed performance!

The underlying idea

Let $\mathbf{Y}:=\{0,1\}$ and let $y \in \mathbf{Y}$, fixed:
Consider the y-parametric optimization problem

$$
J(y)=\min _{\mathbf{x}}\left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{K} ; \mathbf{x} \in\{0,1\}^{n} ; x_{1}=y\right\}
$$

i.e., problem \mathbf{P} where the variable x_{1} is fixed at the value y

The underlying idea

Let $\mathbf{Y}:=\{0,1\}$ and let $y \in \mathbf{Y}$, fixed:
Consider the y-parametric optimization problem

$$
J(y)=\min _{\mathbf{x}}\left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{K} ; \mathbf{x} \in\{0,1\}^{n} ; x_{1}=y\right\}
$$

i.e., problem \mathbf{P} where the variable x_{1} is fixed at the value y

Of course ...

$$
f^{*}=\min _{V}\{J(y): y \in \mathbf{Y}\}
$$

Suppose that one has an approximation $J_{k}: \mathbf{Y} \rightarrow \mathbb{R}$ such that $J_{k}(y) \rightarrow \rho(y)$ as $k \rightarrow \infty$.

Then a (likely) reasonable strategy is:

- Select $x_{1}:=0$ if $J_{k}(0)<J_{k}(1)$ and select $x_{1}:=1$ otherwise!
- repeat with the $(n-1)$-variable 0/1 problem:
and its associated optimization problem:
i.e., problem \mathbf{P} where the variable x_{1} is fixed at the value x_{1}, and the variable x_{2} is fixed at the value
- etc. until one obtains $x \in\{0,1\}^{n}$.

Suppose that one has an approximation $J_{k}: \mathbf{Y} \rightarrow \mathbb{R}$ such that $J_{k}(y) \rightarrow \rho(y)$ as $k \rightarrow \infty$.

Then a (likely) reasonable strategy is:

- Select $x_{1}:=0$ if $J_{k}(0)<J_{k}(1)$ and select $x_{1}:=1$ otherwise!
- repeat with the $(n-1)$-variable $0 / 1$ problem:

$$
\mathbf{P}\left(x_{1}\right): \quad \min \left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{K} ; \mathbf{x} \in\{0,1\}^{n} ; x_{1}=x_{1}\right\}
$$

and its associated y-parametric optimization problem:

$$
J(y)=\min _{\mathbf{x}}\left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{K} ; \mathbf{x} \in\{0,1\}^{n} ; x_{1}=x_{1} ; x_{2}=y\right\}
$$

i.e., problem \mathbf{P} where the variable x_{1} is fixed at the value x_{1}, and the variable x_{2} is fixed at the value $y \in \mathbf{Y}$.

- etc. until one obtains $\mathbf{x} \in\{0,1\}^{n}$.

Features

- For problems where feasibility is easy to determine (e.g., MAXCUT, k-cluster, 0/1-knapsack, ...), one ends up with a feasible $\mathbf{x} \in\{0,1\}^{n}$.
- To compute $J_{k}(y)$ one does NOT need to solve 2 semidefinite relaxations to get $J_{k}(0)$ AND $J_{k}(1)$ as in a Branch and Bound procedure. It suffices to compute the k-th semidefinite relaxation associated with P , with k additional linear constraints!
- An optimal solution of the dual provides us with the function $\mapsto J_{k}(y)$, a linear polynomial $\lambda_{0}+\lambda_{1}$
- and so one selects $x_{1}=0$ if $\lambda_{1}>0$ and $x_{1}=1$ otherwise.
- For problems where feasibility is easy to determine (e.g., MAXCUT, k-cluster, 0/1-knapsack, ...), one ends up with a feasible $\mathbf{x} \in\{0,1\}^{n}$.
- To compute $J_{k}(y)$ one does NOT need to solve 2 semidefinite relaxations to get $J_{k}(0)$ AND $J_{k}(1)$ as in a Branch and Bound procedure. It suffices to compute the k-th semidefinite relaxation associated with \mathbf{P}, with k additional linear constraints!
- An optimal solution of the dual provides us with the
function $y \mapsto J_{k}(y)$, a linear polynomial $\lambda_{0}+\lambda_{1} y$.
- and so one selects $x_{1}=0$ if $\lambda_{1}>0$ and $x_{1}=1$ otherwise.
- For problems where feasibility is easy to determine (e.g., MAXCUT, k-cluster, 0/1-knapsack, ...), one ends up with a feasible $\mathbf{x} \in\{0,1\}^{n}$.
- To compute $J_{k}(y)$ one does NOT need to solve 2 semidefinite relaxations to get $J_{k}(0)$ AND $J_{k}(1)$ as in a Branch and Bound procedure. It suffices to compute the k-th semidefinite relaxation associated with \mathbf{P}, with k additional linear constraints!
- An optimal solution of the dual provides us with the function $y \mapsto J_{k}(y)$, a linear polynomial $\lambda_{0}+\lambda_{1} y$.
- and so one selects $x_{1}=0$ if $\lambda_{1}>0$ and $x_{1}=1$ otherwise.
- For problems where feasibility is easy to determine (e.g., MAXCUT, k-cluster, 0/1-knapsack, ...), one ends up with a feasible $\mathbf{x} \in\{0,1\}^{n}$.
- To compute $J_{k}(y)$ one does NOT need to solve 2 semidefinite relaxations to get $J_{k}(0)$ AND $J_{k}(1)$ as in a Branch and Bound procedure. It suffices to compute the k-th semidefinite relaxation associated with \mathbf{P}, with k additional linear constraints!
- An optimal solution of the dual provides us with the function $y \mapsto J_{k}(y)$, a linear polynomial $\lambda_{0}+\lambda_{1} y$.
- and so one selects $x_{1}=0$ if $\lambda_{1}>0$ and $x_{1}=1$ otherwise.
- The same approach can be done with a block of s parameters $\left(y_{1}, \ldots, y_{s}\right) \in \mathbf{Y}:=\{0,1\}^{s}$. To compute $J_{k}\left(y_{1}, \ldots, y_{s}\right)$, one only needs to solve ONE k-th semidefinite relaxation with $O\left(s^{2 k}\right)$ additional linear constraints instead of solving 2^{s} semidefinite relaxations!
- The function $\left(y_{1}, \ldots y_{s}\right) \mapsto J_{k}\left(y_{1}, \ldots, y_{s}\right)$ is a (square free) polynomial of degree s.

$$
J_{k}\left(y_{1}, \ldots y_{s}\right)=\lambda_{0}+\sum_{i=1}^{s} \lambda_{i} y_{i}+\sum_{1 \leq i<j \leq s} \lambda_{i j} y_{i} y_{j}+\cdots
$$

- Select $\left(x_{1}, \ldots, x_{s}\right) \in\{0,1\}^{s}$ that minimizes J_{k} on Y by inspection of the corresponding 2^{s} values of J_{k}. - Repeat with the $(n-s)$-variable problem $\mathbf{P}\left(x_{1}, \ldots, x_{s}\right)$
- The same approach can be done with a block of s parameters $\left(y_{1}, \ldots, y_{s}\right) \in \mathbf{Y}:=\{0,1\}^{s}$. To compute $J_{k}\left(y_{1}, \ldots, y_{s}\right)$, one only needs to solve ONE k-th semidefinite relaxation with $O\left(s^{2 k}\right)$ additional linear constraints instead of solving 2^{s} semidefinite relaxations!
- The function $\left(y_{1}, \ldots y_{s}\right) \mapsto J_{k}\left(y_{1}, \ldots, y_{s}\right)$ is a (square free) polynomial of degree s.

$$
J_{k}\left(y_{1}, \ldots y_{s}\right)=\lambda_{0}+\sum_{i=1}^{s} \lambda_{i} y_{i}+\sum_{1 \leq i<j \leq s} \lambda_{i j} y_{i} y_{j}+\cdots
$$

- Select $\left(x_{1}, \ldots, x_{s}\right) \in\{0,1\}^{s}$ that minimizes J_{k} on Y by inspection of the corresponding 2^{s} values of J_{k}.
- The same approach can be done with a block of s parameters $\left(y_{1}, \ldots, y_{s}\right) \in \mathbf{Y}:=\{0,1\}^{s}$. To compute $J_{k}\left(y_{1}, \ldots, y_{s}\right)$, one only needs to solve ONE k-th semidefinite relaxation with $O\left(s^{2 k}\right)$ additional linear constraints instead of solving 2^{s} semidefinite relaxations!
- The function $\left(y_{1}, \ldots y_{s}\right) \mapsto J_{k}\left(y_{1}, \ldots, y_{s}\right)$ is a (square free) polynomial of degree s.

$$
J_{k}\left(y_{1}, \ldots y_{s}\right)=\lambda_{0}+\sum_{i=1}^{s} \lambda_{i} y_{i}+\sum_{1 \leq i<j \leq s} \lambda_{i j} y_{i} y_{j}+\cdots
$$

- Select $\left(x_{1}, \ldots, x_{s}\right) \in\{0,1\}^{s}$ that minimizes J_{k} on Y by inspection of the corresponding 2^{s} values of J_{k}.
- Repeat with the $(n-s)$-variable problem $\mathbf{P}\left(x_{1}, \ldots, x_{s}\right)$:

$$
\min _{\mathbf{x}}\left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{K} ; \mathbf{x} \in\{0,1\}^{n} ; x_{k}=x_{k}, k=1, \ldots, s\right\}
$$

and associated $\left(y_{s+1}, \ldots, y_{2 s}\right)$-parametric problem, etc.

Parametric Optimization

Let $\mathbf{Y} \subset \mathbb{R}^{p}$ be a compact set, called the parameter set.
Let $\mathrm{K} \subset \mathbb{R}^{n} \times \mathbb{R}^{p}$ be the set:

$$
\mathbf{K}:=\left\{(\mathbf{x}, \mathbf{y}): \mathbf{y} \in \mathbf{Y} ; \quad h_{j}(\mathbf{x}, \mathbf{y}) \geq 0, \quad j=1, \ldots, m\right\}
$$

for some continuous functions $h_{j}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Consider the following optimization problem:

$$
J(\mathbf{y}):=\inf _{\mathbf{x}}\left\{f(\mathbf{x}, \mathbf{y}): x \in \mathbf{K}_{\mathbf{y}}\right\}
$$

where for each $\mathbf{y} \in \mathrm{Y}$, the $\mathrm{K}_{\mathrm{y}} \subset \mathbb{R}^{n}$ is defined by:

$$
\mathbf{K}_{\mathbf{y}}:=\left\{\mathbf{x} \in \mathbb{R}^{n}:(\mathbf{x}, \mathbf{y}) \in \mathbf{K}\right\}
$$

Parametric optimization is concerned with:

- the global optimal value function $\mathbf{y} \mapsto J(\mathbf{y})$, and
- the global minimizer set function $\mathbf{y} \mapsto \mathbf{x}_{i}^{*}(\mathbf{y})$
- the optimal dual multiplier set function $\mathbf{y} \mapsto \lambda_{j}^{*}(\mathbf{y})$ associated with the constraint $h_{j}(\mathbf{x}, \mathbf{y}) \geq 0$.

In general, getting satisfied with local information (e.g. sensitivity analysis) around some (even local) minimizer $\mathbf{x}^{*}(\mathbf{y}) \in \mathbf{K}_{\mathrm{y}}, \mathbf{y} \in \mathrm{Y}$. (See e.g. the book by

However

Parametric optimization is concerned with:

- the global optimal value function $\mathbf{y} \mapsto J(\mathbf{y})$, and
- the global minimizer set function $\mathbf{y} \mapsto \mathbf{x}_{i}^{*}(\mathbf{y})$
- the optimal dual multiplier set function $\mathbf{y} \mapsto \lambda_{j}^{*}(\mathbf{y})$ associated with the constraint $h_{j}(\mathbf{x}, \mathbf{y}) \geq 0$.

In general, getting full information is impossible, and one is satisfied with local information (e.g. sensitivity analysis) around some (even local) minimizer $\mathbf{x}^{*}(\mathbf{y}) \in \mathbf{K}_{\mathbf{y}}, \mathbf{y} \in \mathbf{Y}$. (See e.g. the book by Bonnans and Shapiro.)

Parametric optimization is concerned with:

- the global optimal value function $\mathbf{y} \mapsto J(\mathbf{y})$, and
- the global minimizer set function $\mathbf{y} \mapsto \mathbf{x}_{i}^{*}(\mathbf{y})$
- the optimal dual multiplier set function $\mathbf{y} \mapsto \lambda_{j}^{*}(\mathbf{y})$ associated with the constraint $h_{j}(\mathbf{x}, \mathbf{y}) \geq 0$.

In general, getting full information is impossible, and one is satisfied with local information (e.g. sensitivity analysis) around some (even local) minimizer $\mathbf{x}^{*}(\mathbf{y}) \in \mathbf{K}_{\mathbf{y}}, \mathbf{y} \in \mathbf{Y}$. (See e.g. the book by Bonnans and Shapiro.)

However ...

For polynomial optimization much more is possible!

The "joint+marginal" approach

Let φ be a Borel probability measure on Y , with a positive density with respect to the Lebesgue measure on the smallest affine variety that contains Y. For instance,

$$
\varphi(B):=\left(\int_{\mathrm{Y}} d \mathbf{y}\right)^{-1} \int_{B} d \mathbf{y}, \quad \forall B \in \mathcal{B}(\mathbf{Y})
$$

is uniformly distributed on \mathbf{Y}.
For a discrete set of parameters \mathbf{Y} (finite or countable) take for φ a discrete probability measure on Y with strictly positive weight at each point of the support.
Sometimes, e.g. in the context of optimization with data uncertainty, φ is already specified.

A related infinite-dimensional linear program:

Consider the infinite-dimensional LP:

$$
\mathbf{P}: \quad \rho:=\inf _{\mu \in \mathbf{M}(\mathbf{K})}\left\{\int_{\mathbf{K}} f \boldsymbol{d} \mu: \pi \mu=\varphi\right\}
$$

where: $\mathbf{M}(\mathbf{K})$ is the of Borel probability measures on \mathbf{K}, and $\pi: \mathbf{M}(\mathbf{K}) \rightarrow \mathbf{M}(\mathbf{Y})$ is the projection (or, marginal) on \mathbf{Y}.

Whence the name "joint+marginal"-approach since:
is a joint distribution on the variables \mathbf{x} AND the parameters
is the marginal of μ on Y (fixed, as a constraint on

A related infinite-dimensional linear program:

Consider the infinite-dimensional LP:

$$
\mathbf{P}: \quad \rho:=\inf _{\mu \in \mathbf{M}(\mathbf{K})}\left\{\int_{\mathbf{K}} f d \mu: \pi \mu=\varphi\right\}
$$

where: $\mathbf{M}(\mathbf{K})$ is the of Borel probability measures on \mathbf{K}, and $\pi: \mathbf{M}(\mathbf{K}) \rightarrow \mathbf{M}(\mathbf{Y})$ is the projection (or, marginal) on \mathbf{Y}.

Whence the name "joint+marginal"-approach since:

- μ is a joint distribution on the variables \mathbf{x} AND the parameters
y.
- φ is the marginal of μ on \mathbf{Y} (fixed, as a constraint on μ).

The dual \mathbf{P}^{*} is the infinite-dimensional LP:

$$
\begin{aligned}
\mathbf{P}^{*}: \quad \rho^{*}:=\sup _{g \in C(\mathbf{Y})} & \int_{\mathbf{Y}} g(\mathbf{y}) d \varphi(\mathbf{y}) \\
& f(\mathbf{x}, \mathbf{y})-g(\mathbf{y}) \geq 0 \quad \forall(\mathbf{x}, \mathbf{y}) \in \mathbf{K} .
\end{aligned}
$$

where $C(\mathrm{Y})$ is the set of continuous functions on Y .

In other words, among the continuous functions g on Y such that:

one searches for the one that maximizes $\int_{Y} g d \varphi$

The dual \mathbf{P}^{*} is the infinite-dimensional LP:

$$
\begin{aligned}
\mathbf{P}^{*}: \quad \rho^{*}:=\sup _{g \in C(\mathbf{Y})} & \int_{\mathbf{Y}} g(\mathbf{y}) d \varphi(\mathbf{y}) \\
& f(\mathbf{x}, \mathbf{y})-g(\mathbf{y}) \geq 0 \quad \forall(\mathbf{x}, \mathbf{y}) \in \mathbf{K} .
\end{aligned}
$$

where $C(\mathrm{Y})$ is the set of continuous functions on Y .

In other words, among the continuous functions g on Y such that:

$$
f(\mathbf{x}, \mathbf{y}) \geq g(\mathbf{y}) \quad \forall \mathbf{x} \in \mathbf{K}_{\mathbf{y}}
$$

one searches for the one that maximizes $\int_{\mathbf{Y}} g d \varphi$.

Why those LPs?

We assume that \mathbf{K} is compact.

As we shall see

Any optimal solution μ^{*} of the primal \mathbf{P} encodes all information on the optimal solutions $\mathbf{x}^{*}(\mathbf{y})$ of \mathbf{P}_{y}.

Similarly
 There is
 value function $\mathrm{y} \mapsto \mathrm{J}(\mathrm{y})$ of P_{y} can be nicely

Why those LPs?

We assume that \mathbf{K} is compact.

As we shall see

Any optimal solution μ^{*} of the primal \mathbf{P} encodes all information on the optimal solutions $\mathbf{x}^{*}(\mathbf{y})$ of $\mathbf{P}_{\mathbf{y}}$.

Similarly

There is no duality gap $\rho=\rho^{*}$ and so, in particular, the optimal value function $\mathbf{y} \mapsto J(\mathbf{y})$ of $\mathbf{P}_{\mathbf{y}}$ can be nicely approximated by polynomials.

Theorem (The primal side ...)

Assume that K is compact and $\mathrm{K}_{\mathrm{y}} \neq \emptyset$ for every $\mathrm{y} \in \mathrm{Y}$. Let $\mathbf{X}_{\mathbf{y}}^{*}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x}, \mathbf{y})=J(\mathbf{y})\right\}, \mathbf{y} \in \mathbf{Y}$. Then:
(a) $\rho=\int_{\mathbf{Y}} J(\mathbf{y}) d \varphi(\mathbf{y})$ and \mathbf{P} has an optimal solution.
(b) For every optimal solution μ^{*} of \mathbf{P}, and for φ-almost all $\mathbf{y} \in \mathbf{Y}$, there is a probability measure $\psi^{*}(d \mathbf{x} \mid \mathbf{y})$ on \mathbb{R}^{n}, concentrated on $\mathbf{X}_{\mathrm{y}}^{*}$, such that:

$$
\mu^{*}(C \times B)=\int_{B} \psi^{*}(C \mid \mathbf{y}) d \varphi(\mathbf{y}), \quad \forall B \in \mathcal{B}(\mathbf{Y}), C \in \mathcal{B}\left(\mathbb{R}^{n}\right)
$$

continued ...

(c) Assume that for φ-almost all $\mathbf{y} \in \mathbf{Y}$, the set of minimizers $\mathbf{X}_{\mathbf{y}}^{*}$ is the singleton $\left\{\mathbf{x}^{*}(\mathbf{y})\right\}$ for some $\mathbf{x}^{*}(\mathbf{y}) \in \mathbf{K}_{\mathbf{y}}$. Then there is a measurable mapping $g: \mathbf{Y} \rightarrow \mathbf{K}_{\mathbf{y}}$ such that

$$
g(\mathbf{y})=\mathbf{x}^{*}(\mathbf{y}) \text { for every } \mathbf{y} \in \mathbf{Y} ; \quad \rho=\int_{\mathbf{Y}} f(g(\mathbf{y}), \mathbf{y}) \boldsymbol{d} \varphi(\mathbf{y})
$$

and for every $\alpha \in \mathbb{N}^{n}$, and $\beta \in \mathbb{N}^{p}$.

$$
\int_{\mathbf{K}} \mathbf{x}^{\alpha} \mathbf{y}^{\beta} d \mu^{*}(\mathbf{x}, \mathbf{y})=\int_{\mathbf{Y}} \mathbf{y}^{\beta} g(\mathbf{y})^{\alpha} d \varphi(\mathbf{y}) .
$$

Theorem (The dual side ...)

(a) There is no duality gap, i.e.,

$$
\rho=\rho^{*}=\int_{\mathbf{Y}} J(\mathbf{y}) d \varphi(\mathbf{y}),
$$

(b) One may use polynomials of $\mathbb{R}[\mathbf{y}]$ to approximate ρ^{*}.
(c) Let $\left(p_{i}\right) \subset \mathbb{R}[y]$ be any maximizing sequence. Then:
L_{1}-norm convergence:

$$
\text { as } i \rightarrow \infty, \quad \int_{\mathrm{Y}}\left|J(\mathbf{y})-p_{i}(\mathbf{y})\right| d \varphi(\mathbf{y}) \rightarrow 0
$$

φ-almost sure convergence: Let $\tilde{p}_{i}:=\max _{k=0, . ., i} p_{i}$. Then

$$
\text { as } i \rightarrow \infty, \quad \tilde{p}_{i} \rightarrow J \quad \varphi \text {-almost surely in } \mathrm{Y}
$$

Polynomial Parametric Optimization

In general, \mathbf{P} and \mathbf{P}^{*} are intractable!

However when:

- Y and K, are basic semi-algebraic sets, and:
- either one already knows the moments of φ, or \mathbf{Y} is simple enough (e.g. a box, a simplex, a hyper-sphere) so that they can be computed.
then one can approximate the optimal value ρ of P, and:

[^0]
Polynomial Parametric Optimization

In general, \mathbf{P} and \mathbf{P}^{*} are intractable!

However when:

- Y and K, are basic semi-algebraic sets, and:
- either one already knows the moments of φ, or \mathbf{Y} is simple enough (e.g. a box, a simplex, a hyper-sphere) so that they can be computed.
then one can approximate the optimal value ρ of \mathbf{P}, and:
- The optimal value mapping $\mathbf{y} \mapsto J(\mathbf{y})$
- The global minimizer mapping $\mathbf{y} \mapsto \mathbf{x}^{*}(\mathbf{y})$,

via the hierarchy of semidefinite relaxations

adapted from the
in polynomial
optimization.

Polynomial Parametric Optimization

In general, \mathbf{P} and \mathbf{P}^{*} are intractable!

However when:

- Y and K, are basic semi-algebraic sets, and:
- either one already knows the moments of φ, or \mathbf{Y} is simple enough (e.g. a box, a simplex, a hyper-sphere) so that they can be computed.
.... then one can approximate the optimal value ρ of \mathbf{P}, and:
- The optimal value mapping $\mathbf{y} \mapsto J(\mathbf{y})$
- The global minimizer mapping $\mathbf{y} \mapsto \mathbf{x}^{*}(\mathbf{y})$,
... via the hierarchy of semidefinite relaxations
adapted from the moment-s.o.s. approach in polynomial optimization.

More details in:
The "joint+marginal" approach for parametric optimization SIAM J. Optim. 20 (2010).

A "joint+marginal" algorithm for 0/1 optimization

With $\mathrm{K} \subset \mathbb{R}^{n}$ being the basic semi-algebraic set

$$
\mathbf{K}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geq 0, j=1, \ldots, m\right\}
$$

Consider the 0/1 polynomial optimization problem

$$
\mathbf{P}: \quad f^{*}=\min \left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{K} ; \mathbf{x} \in\{0,1\}^{n}\right\}
$$

and its associated y-parametric optimization problem:

$$
\rho(y)=\min _{\mathbf{x}}\left\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in \mathbf{K} ; \mathbf{x} \in\{0,1\}^{n} ; x_{1}=y\right\}
$$

The moment-s.o.s. approach

Let $\mathbb{N}_{i}^{n}:=\left\{\alpha \in \mathbb{N}^{n}: \sum_{j} \alpha_{j} \leq i\right\}$.
With a sequence $z=\left(z_{\alpha}\right)$, indexed in the canonical basis $\left(x^{\alpha}\right)$ of $\mathbb{R}[x]$, let $L_{z}: \mathbb{R}[x] \rightarrow \mathbb{R}$ be the linear mapping:

$$
f\left(=\sum_{\alpha} f_{\alpha} x^{\alpha}\right) \mapsto L_{z}(f):=\sum_{\alpha} f_{\alpha} z_{\alpha}, \quad f \in \mathbb{R}[x] .
$$

The moment matrix $\mathbf{M}_{i}(\mathbf{z})$

associated with a sequence $z=\left(z_{\alpha}\right)$, has its rows and columns indexed in the canonical basis $\left(x^{\alpha}\right)$, and with entries.

$$
\mathbf{M}_{i}(\mathrm{z})(\alpha, \beta)=L_{z}\left(x^{\alpha} x^{\beta}\right)=z_{\alpha+\beta}
$$

for every $\alpha, \beta \in \mathbb{N}_{i}^{p}$

Let q be the polynomial $x \mapsto q(x):=\sum_{u} q_{u} x^{u}$.

The localizing matrix $\mathbf{M}_{i}(q, z)$ associated with

$q \in \mathbb{R}[x]$ and a sequence $z=\left(z_{\alpha}\right)$, has its rows and columns indexed in the canonical basis $\left(x^{\alpha}\right)$, and with entries.

$$
\mathbf{M}_{i}(q z)(\alpha, \beta)=L_{z}\left(q(x) x^{\alpha} x^{\beta}\right)=\sum_{u \in \mathbb{N}^{n}} q_{u} z_{\alpha+\beta+u}
$$

for every $\alpha, \beta \in \mathbb{N}_{i}^{n}$.

Primal semidefinite relaxations:

Let $\left.v_{j}:=\left\lceil\left(\operatorname{deg} g_{j}\right) / 2\right\rceil\right]$ for every $j=1, \ldots, m$ and let $i_{0}:=\max \left[\lceil(\operatorname{deg} f) / 2\rceil, \max _{j} v_{j}\right]$.

For $k \geq i_{0}$, consider the semidefinite program:

$$
\begin{aligned}
\rho_{k}=\inf _{z} & L_{z}(f) \\
\text { s.t. } & \mathbf{M}_{k}(z) \succeq 0 \\
& \mathbf{M}_{k-v_{j}}\left(g_{j} z\right) \succeq 0, \quad j=1, \ldots, m \\
& L_{z}\left(x^{\alpha}\right)=L_{z}\left(x^{1} \alpha>0\right), \quad \forall|\alpha| \leq 2 k \\
& L_{z}(1)=1 \\
& L_{z}\left(x_{1}\right)=1 / 2
\end{aligned}
$$

where $1_{\alpha>0}=\left(1_{\alpha_{1}>0}, \ldots, 1_{\alpha_{n}>0}\right)$. (Comes from $\left.x_{i}{ }^{2}=x_{i}, \forall i\right)$.

$$
\rho_{i_{0}} \leq \cdots \leq \rho_{k} \leq \cdots \leq \rho .
$$

Dual semidefinite relaxation

The dual reads:

$$
\begin{array}{ll}
\rho_{k}^{*}= & \sup _{\lambda,\left(\sigma_{i}\right)} \lambda_{0}+\lambda_{1} / 2 \\
\text { s.t. } & f(x)-\left(\lambda_{0}+\lambda_{1} x_{1}\right)=\sigma_{0}(x)+\sum_{j=1}^{m} \sigma_{j}(x) g_{j}(x), \forall x \\
& \sigma_{j} \in \Sigma[x], \quad j=1, \ldots, m \\
& \operatorname{deg} \sigma_{j} g_{j} \leq 2 k, \quad j=1, \ldots, m
\end{array}
$$

Set $y \mapsto J_{k}(y):=\lambda_{0}^{k}+\lambda_{1}^{k} y$ for an optimal solution
and observe that, and observe that

with $\varphi(\{0\})=1 / 2$ and $\varphi(\{1\})=1 / 2$.

Dual semidefinite relaxation

The dual reads:

$$
\begin{array}{ll}
\rho_{k}^{*}= & \sup _{\lambda,\left(\sigma_{i}\right)} \lambda_{0}+\lambda_{1} / 2 \\
\text { s.t. } & f(x)-\left(\lambda_{0}+\lambda_{1} x_{1}\right)=\sigma_{0}(x)+\sum_{j=1}^{m} \sigma_{j}(x) g_{j}(x), \forall x \\
& \sigma_{j} \in \Sigma[x], \quad j=1, \ldots, m \\
& \operatorname{deg} \sigma_{j} g_{j} \leq 2 k, \quad j=1, \ldots, m
\end{array}
$$

Set $\boldsymbol{y} \mapsto J_{k}(y):=\lambda_{0}^{k}+\lambda_{1}^{k} y$ for an optimal solution $\left(\lambda_{0}^{k}, \lambda_{1}^{k}, \sigma_{j}^{k}\right)$, and observe that, and observe that

$$
\lambda_{0}^{k}+\lambda_{1}^{k} / 2=\int_{\mathbf{Y}} J_{k}(y) d \varphi(y)=\int_{\{0,1\}} J_{k}(y) d \varphi(y)
$$

with $\varphi(\{0\})=1 / 2$ and $\varphi(\{1\})=1 / 2$.

Theorem

Consider the dual semidefinite relaxations. Then:
(a) $\rho_{k}^{*} \uparrow \rho$ as $k \rightarrow \infty$.
(b) Let $\left(\lambda_{0}^{k}, \lambda_{1}^{k}, \sigma_{k}^{k}\right)$ be an optimal solution. Then:

$$
(0)=\lambda_{0}^{k} \leq J(0) \quad \text { and } \quad J_{k}(1)=\lambda_{0}^{k}+\lambda_{1}^{k} \leq J(1) .
$$

Moreover, as $k \rightarrow \infty$,

$$
(0)=\lambda^{\prime} \rightarrow J(0) \quad \text { and } \quad J(1)=\lambda_{0}+\lambda \rightarrow J(1)
$$

In fact, finite convergence takes place!

Theorem

Consider the dual semidefinite relaxations. Then:
(a) $\rho_{k}^{*} \uparrow \rho$ as $k \rightarrow \infty$.
(b) Let $\left(\lambda_{0}^{k}, \lambda_{1}^{k}, \sigma_{j}^{k}\right)$ be an optimal solution. Then:

$$
J_{k}(0)=\lambda_{0}^{K} \leq J(0) \quad \text { and } \quad J_{k}(1)=\lambda_{0}^{K}+\lambda_{1}^{K} \leq J(1) .
$$

Moreover, as $k \rightarrow \infty$,

$$
(0)=\lambda_{0}^{k} \rightarrow J(0) \quad \text { and } \quad J_{k}(1)=\lambda_{0}^{k}+\lambda_{1}^{k} \rightarrow J(1) .
$$

In fact, finite convergence takes place!

Theorem

Consider the dual semidefinite relaxations. Then:
(a) $\rho_{k}^{*} \uparrow \rho$ as $k \rightarrow \infty$.
(b) Let $\left(\lambda_{0}^{k}, \lambda_{1}^{k}, \sigma_{j}^{k}\right)$ be an optimal solution. Then:

$$
J_{k}(0)=\lambda_{0}^{K} \leq J(0) \quad \text { and } \quad J_{k}(1)=\lambda_{0}^{K}+\lambda_{1}^{K} \leq J(1) .
$$

Moreover, as $k \rightarrow \infty$,

$$
J_{k}(0)=\lambda_{0}^{K} \rightarrow J(0) \quad \text { and } \quad J_{k}(1)=\lambda_{0}^{k}+\lambda_{1}^{k} \rightarrow J(1)
$$

In fact, finite convergence takes place!

Hence .. if k is suffciently large,

$$
\lambda_{1}^{k}>0 \Rightarrow x_{1}^{*}=0 \quad \text { and } \quad \lambda_{1}^{k}<0 \Rightarrow x_{1}^{*}=1
$$

in any optimal solution x^{*} of \mathbf{P} !
... which provides a rationale for the following

"joint+margina" algorithm for 0/1 optimization

While $i<n$ repeat:

- Consider the $0 / 1$ problem $P\left(x_{1}, \ldots, x_{i-1}\right)$ which is P where the first $i-1$ components of x are already fixed.
- Solve the k-th semidefinite relaxation with parameter x_{1} associated with $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}\right)$, and get an optimal solution ($\left.\lambda_{0}^{k}, \lambda_{1}^{k}, \sigma_{j}^{k}\right)$ of the dual.
- If $\lambda_{1}^{k}>0$ set $x_{i}=0$ and $x_{i}=1$ otherwise.
- If $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}, x_{i}\right)$ has a feasible solution select $x_{i}:=x_{i}$ and $x_{i}:=1-x_{i}$ otherwise.

Hence .. if k is suffciently large,

$$
\lambda_{1}^{k}>0 \Rightarrow x_{1}^{*}=0 \quad \text { and } \quad \lambda_{1}^{k}<0 \Rightarrow x_{1}^{*}=1
$$

in any optimal solution x^{*} of \mathbf{P} !
... which provides a rationale for the following

"joint+marginal" algorithm for 0/1 optimization

While $i<n$ repeat:

- Consider the $0 / 1$ problem $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}\right)$ which is \mathbf{P} where the first $i-1$ components of \mathbf{x} are already fixed.

Hence .. if k is suffciently large,

$$
\lambda_{1}^{k}>0 \Rightarrow x_{1}^{*}=0 \quad \text { and } \quad \lambda_{1}^{k}<0 \Rightarrow x_{1}^{*}=1
$$

in any optimal solution x^{*} of \mathbf{P} !
... which provides a rationale for the following

"joint+marginal" algorithm for 0/1 optimization

While $i<n$ repeat:

- Consider the $0 / 1$ problem $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}\right)$ which is \mathbf{P} where the first $i-1$ components of \mathbf{x} are already fixed.
- Solve the k-th semidefinite relaxation with parameter x_{i} associated with $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}\right)$, and get an optimal solution ($\lambda_{0}^{k}, \lambda_{1}^{k}, \sigma_{j}^{k}$) of the dual.
$=0$ and
$=1$ otherwise.

Hence .. if k is suffciently large,

$$
\lambda_{1}^{k}>0 \Rightarrow x_{1}^{*}=0 \quad \text { and } \quad \lambda_{1}^{k}<0 \Rightarrow x_{1}^{*}=1
$$

in any optimal solution x^{*} of \mathbf{P} !
... which provides a rationale for the following

"joint+marginal" algorithm for 0/1 optimization

While $i<n$ repeat:

- Consider the $0 / 1$ problem $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}\right)$ which is \mathbf{P} where the first $i-1$ components of \mathbf{x} are already fixed.
- Solve the k-th semidefinite relaxation with parameter x_{i} associated with $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}\right)$, and get an optimal solution ($\lambda_{0}^{k}, \lambda_{1}^{k}, \sigma_{j}^{k}$) of the dual.
- If $\lambda_{1}^{k}>0$ set $x_{i}=0$ and $x_{i}=1$ otherwise.

Hence .. if k is suffciently large,

$$
\lambda_{1}^{k}>0 \Rightarrow x_{1}^{*}=0 \quad \text { and } \quad \lambda_{1}^{k}<0 \Rightarrow x_{1}^{*}=1
$$

in any optimal solution x^{*} of \mathbf{P} !
... which provides a rationale for the following

"joint+marginal" algorithm for 0/1 optimization

While $i<n$ repeat:

- Consider the $0 / 1$ problem $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}\right)$ which is \mathbf{P} where the first $i-1$ components of \mathbf{x} are already fixed.
- Solve the k-th semidefinite relaxation with parameter x_{i} associated with $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}\right)$, and get an optimal solution ($\lambda_{0}^{k}, \lambda_{1}^{k}, \sigma_{j}^{k}$) of the dual.
- If $\lambda_{1}^{k}>0$ set $x_{i}=0$ and $x_{i}=1$ otherwise.
- If $\mathbf{P}\left(x_{1}, \ldots, x_{i-1}, x_{i}\right)$ has a feasible solution select $x_{i}:=x_{i}$ and $x_{i}:=1-x_{i}$ otherwise.

The rationale behind the "joint+marginal" algorithm:

- The larger k, the better the approximation of $J(\mathbf{y})$ by the univariate polynomial $J_{k}(\mathbf{y})=\lambda_{0}^{k}+\lambda_{1}^{k} y$. And so in minimizing $J_{k}(\mathbf{y})$ over Y one has a good chance to obtain $x_{1} \approx x_{1}^{*}$, where \mathbf{x}^{*} is a global minimizer of \mathbf{P}. And so at the end one may expect $x \approx \mathbf{x}^{*}$.
- But ... the interest is to precisely have k not too large so as to handle relatively large size problems.
- Preliminary results are encouraging!

The rationale behind the "joint+marginal" algorithm:

- The larger k, the better the approximation of $J(\mathbf{y})$ by the univariate polynomial $J_{k}(\mathbf{y})=\lambda_{0}^{k}+\lambda_{1}^{k} y$. And so in minimizing $J_{k}(\mathbf{y})$ over Y one has a good chance to obtain $x_{1} \approx x_{1}^{*}$, where \mathbf{x}^{*} is a global minimizer of \mathbf{P}. And so at the end one may expect $x \approx \mathbf{x}^{*}$.
- But ... the interest is to precisely have k not too large so as to handle relatively large size problems.
- Preliminary results are encouraging!

EX: MAX-CUT problem: $\left.\max { }^{\top} \mathbf{A}: \in\{-1,1\}^{n}\right\}$

- $\mathbf{Y}=\{-1,1\}$, and let $\varphi(\{1\})=\varphi(\{-1\}=1 / 2$.
- We fix $k=1$. The semidefinite program

is the first semidefinite relaxation of \mathbf{P} (with celebrated
Goemans \& Williamson performance garantee).
- The 1-th parametric semidefinite relaxation reads:

which is Q_{1} with ONE additional constraint
- $\mathbf{Y}=\{-1,1\}$, and let $\varphi(\{1\})=\varphi(\{-1\}=1 / 2$.
- We fix $k=1$. The semidefinite program

$$
\mathbf{Q}_{1}:\left\{\begin{aligned}
\max & \operatorname{trace}(A X) \\
\text { s.t. } & \left(\begin{array}{cc}
1 & x^{\prime} \\
x & X
\end{array}\right) \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n
\end{aligned}\right.
$$

is the first semidefinite relaxation of \mathbf{P} (with celebrated Goemans \& Williamson performance garantee).

- The 1-th parametric semidefinite relaxation reads:

$$
\left\{\begin{aligned}
\rho_{1}=\max & \operatorname{trace}(A X) \\
\text { s.t. } & \left(\begin{array}{cc}
1 & x^{\prime} \\
x & X
\end{array}\right) \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n \\
& x_{1}=1 / 2
\end{aligned}\right.
$$

which is \mathbf{Q}_{1} with ONE additional constraint $x_{1}=1 / 2$.

We have tested the "joint+marginal" algorithm on a sample of 50 and 100 randomly generated MAXCUT instances with $n=20,30$ and 40 nodes in the corresponding graph. An arc (i, j) is generated with probability $1 / 2$. and $A_{i j}$ is generated according to a uniform distribution on $[0,10]$.
Let P_{1} be the values of the solution generated by the "joint+marginal" algorithm.

n	20	30	40
$\left(\mathbf{P}_{1}-\mathbf{Q}_{1}\right) /\left\|\mathbf{Q}_{1}\right\|$	10.3%	12.3%	12.5%

Table: Relative error for MAXCUT
\dagger We implemented the "max-gap" variant which instead of selecting x_{1}, then x_{2}, etc. selects first the variable x_{i} with maximum gap $\left|J_{1}(-1)-J_{1}(1)\right|$, etc.

We have tested the "joint+marginal" algorithm on a sample of 50 and 100 randomly generated MAXCUT instances with $n=20,30$ and 40 nodes in the corresponding graph. An arc (i, j) is generated with probability $1 / 2$. and $A_{i j}$ is generated according to a uniform distribution on $[0,10]$.
Let P_{1} be the values of the solution generated by the "joint+marginal" algorithm.

n	20	30	40
$\left(\mathbf{P}_{1}-\mathbf{Q}_{1}\right) /\left\|\mathbf{Q}_{1}\right\|$	10.3%	12.3%	12.5%

Table: Relative error for MAXCUT
\dagger We implemented the "max-gap" variant which instead of selecting x_{1}, then x_{2}, etc. selects first the variable x_{i} with maximum gap $\left|\mathcal{J}_{1}(-1)-J_{1}(1)\right|$, etc.

0/1 knapsack problem

$$
\mathbf{P}: \quad \max _{\mathrm{x}}\left\{\sum_{i=1}^{n} c_{i} x_{i}: \sum_{i=1}^{n} a_{i} x_{i} \leq b ; \quad \mathbf{x} \in\{0,1\}^{n}\right\}
$$

The first semidefinite relaxation of \mathbf{P} is:

$$
\mathbf{Q}_{1}: \begin{cases}\max & \operatorname{trace}(A X) \\
\text { s.t. } & \left(\begin{array}{cc}
1 & x^{\prime} \\
x & X
\end{array}\right) \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n \\
& \sum_{i=1}^{n} a_{i} x_{i} \leq b\end{cases}
$$

For the 1-th parametric semidefinite relaxation it suffices to add the linear constraint $x_{1}=1 / 2$.

0/1 knapsack problem

$$
\mathbf{P}: \quad \max _{\mathrm{x}}\left\{\sum_{i=1}^{n} c_{i} x_{i}: \sum_{i=1}^{n} a_{i} x_{i} \leq b ; \quad \mathbf{x} \in\{0,1\}^{n}\right\}
$$

The first semidefinite relaxation of \mathbf{P} is:

$$
\mathbf{Q}_{1}:\left\{\begin{array}{cl}
\max & \operatorname{trace}(A X) \\
\text { s.t. } & \left(\begin{array}{cc}
1 & x^{\prime} \\
x & x
\end{array}\right) \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n \\
& \sum_{i=1}^{n} a_{i} x_{i} \leq b
\end{array}\right.
$$

For the 1-th parametric semidefinite relaxation it suffices to add the linear constraint $x_{1}=1 / 2$.

One may even add the n redundant constraints:

$$
x_{\ell}\left[\sum_{i=1}^{n} a_{i} x_{i}-b\right] \leq 0 \quad \ell=1, \ldots, n
$$

which read

$$
\sum_{i=1}^{n} a_{i} x_{\ell i}-b x_{\ell} \leq 0 \quad \ell=1, \ldots, n
$$

We have tested the "joint+marginal" algorithm on a sample of problems with $n=40$ and $n=50$ variables where:

- $b=\sum_{i} a_{i} / 2$, and the integers a_{i} 's are generated uniformly in [10, 100].
- The vector \mathbf{c} is generated by: $c_{i}=s * \epsilon+a_{i}$ with $s=0.1,1,5,10$ and ϵ is a random variable uniformly distributed in $[0,1]$.

s	0.1	1	5	10
$\left(\mathbf{P}_{1}-\mathbf{Q}_{1}\right) /\left\|\mathbf{Q}_{1}\right\|$	2.5%	1.42%	1.5%	

Table: Relative error for 0/1 KNAPSACK: $n=40$

s	0.1	1	5	10
$\left(P_{1}-\mathbf{Q}_{1}\right) /\left\|\mathbf{Q}_{1}\right\|$	1.86%	1.42%	0.7%	0.08%

Table: Relative error for 0/1 KNAPSACK: $n=50$

s	0.1	1	5	10
$\left(\mathbf{P}_{1}-\mathbf{Q}_{1}\right) /\left\|\mathbf{Q}_{1}\right\|$	2.5%	1.42%	1.5%	

Table: Relative error for 0/1 KNAPSACK: $n=40$

s	0.1	1	5	10
$\left(P_{1}-\mathbf{Q}_{1}\right) /\left\|\mathbf{Q}_{1}\right\|$	1.86%	1.42%	0.7%	0.08%

Table: Relative error for 0/1 KNAPSACK: $n=50$

k-cluster problem

$$
\mathbf{P}: \quad \max _{\mathbf{x}}\left\{\sum_{i=1}^{n} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}: \sum_{i=1}^{n} x_{i}=k ; \quad \mathbf{x} \in\{0,1\}^{n}\right\}
$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is real symmetric matrix associated with a graph. The first semidefinite relaxation of \mathbf{P} is:

$$
\mathbf{Q}_{1}: \begin{cases}\max & \operatorname{trace}(A X) \\
\text { s.t. } & \left(\begin{array}{cc}
1 & x^{\prime} \\
x & X
\end{array}\right) \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n \\
& \sum_{i=1}^{n} x_{i}=k\end{cases}
$$

For the
the linear constraint $x_{1}=1 / 2$.

k-cluster problem

$$
\mathbf{P}: \quad \max _{\mathbf{x}}\left\{\sum_{i=1}^{n} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}: \sum_{i=1}^{n} x_{i}=k ; \quad \mathbf{x} \in\{0,1\}^{n}\right\}
$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is real symmetric matrix associated with a graph. The first semidefinite relaxation of \mathbf{P} is:

$$
\mathbf{Q}_{1}:\left\{\begin{aligned}
\max & \operatorname{trace}(A X) \\
\text { s.t. } & \left(\begin{array}{cc}
1 & x^{\prime} \\
x & X
\end{array}\right) \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n \\
& \sum_{i=1}^{n} x_{i}=k
\end{aligned}\right.
$$

For the 1-parametric semidefinite relaxation it suffices to add the linear constraint $x_{1}=1 / 2$.

One may even add the n redundant constraints:

$$
x_{\ell}\left[\sum_{i=1}^{n} x_{i}-k\right]=0 \quad \ell=1, \ldots, n
$$

which read

$$
\sum_{i=1}^{n} x_{\ell i}-k x_{\ell}=0 \quad \ell=1, \ldots, n
$$

We have tested the "joint+marginal" algorithm on a sample of problems with $n=40$ nodes, with $k=n / 2$ and where an arc (i, j) is generated with probability $1 / 2$. and $A_{i j}$ is generated according to a uniform distribution on $[0,10]$.

On 4 problems we observed an average relative error $\left(\mathbf{P}_{1}-\mathbf{Q}_{1}\right) /\left|\mathbf{Q}_{1}\right|$ of less than 5%.

We have tested the "joint+marginal" algorithm on a sample of problems with $n=40$ nodes, with $k=n / 2$ and where an arc (i, j) is generated with probability $1 / 2$. and $A_{i j}$ is generated according to a uniform distribution on $[0,10]$.

On 4 problems we observed an average relative error $\left(\mathbf{P}_{1}-\mathbf{Q}_{1}\right) /\left|\mathbf{Q}_{1}\right|$ of less than 5%.

THANK YOU !!

[^0]: ... via the hierarchy of semidefinite relaxations
 adapted from the
 in polynomial
 optimization.

