MIXED INTEGER NON-LINEAR PROGRAMS FEATURING "ON/OFF" CONSTRAINTS APPLICATION IN

 TELECOMMUNICATIONSHassan Hijazi - Pierre Bonami - Gérard Cornuéjols - Adam Ouorou
\square Defining "on/off" constraints
\square Defining "perspective" functions
Connections to earlier works
\square A new result
\square Our motivating application: the delay constrained routing problem

Defining "on/off" constraints

\square Considered Problems:

Given convex functions h, g and f_{k} : $\min h(\mathbf{x}, \mathbf{y}, \mathbf{z})$
s.t. $g(\mathbf{x}, \mathbf{y}, \mathbf{z}) \leq 0$
$f_{k}(\mathbf{x}) \leq 0$ if $z_{k}=1, \forall k \in\left\{1,2, \ldots, n_{k}\right\}$,
$\mathbf{l} \leq \mathrm{x} \leq \mathbf{u}$,
$\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{N}^{m}, \mathbf{z} \in\{0,1\}^{n_{k}}$.
\square The indicator variable z_{k} controls the activation of the $k^{\text {th }}$ on/off constraint

Defining "on/off" constraints

\square For each "on/off" constraint, the generated feasible region is a union of two disjoint sets

Defining "on/off" constraints

\square Classical convex formulations rely on the Big-M approach:

$$
\begin{array}{ll}
& \min h(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\
\text { s.t. } & g(\mathbf{x}, \mathbf{y}, \mathbf{z}) \leq 0 \\
& f_{k}(\mathbf{x}) \leq\left(1-z_{k}\right) M, \forall k \in\left\{1,2, \ldots, n_{k}\right\}, \\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u} \\
& \mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{N}^{m}, \mathbf{z} \in\{0,1\}^{n_{k}} .
\end{array}
$$

\square Advantage: Compact models
\square Inconvenient: Bad continuous relaxation

Defining "on/off" constraints

\square The problem can be written as a Disjunctive Program:

$$
\min h(\mathbf{x}, \mathbf{y}, \mathbf{z})
$$

s.t. $g(\mathbf{x}, \mathbf{y}, \mathbf{z}) \leq 0$

$$
\begin{aligned}
& \left(\mathbf{x}, z_{k}\right) \in \Gamma_{0}^{k} \cup \Gamma_{1}^{k}, \forall k \in\left\{1,2, \ldots, n_{k}\right\} \\
& \Gamma_{0}^{k}=\left\{\left(\mathbf{x}, z_{k}\right) \in \mathbb{R}^{n} \times\{0,1\}: z_{k}=0, \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}\right\} \\
& \Gamma_{1}^{k}=\left\{\left(\mathbf{x}, z_{k}\right) \in \mathbb{R}^{n} \times\{0,1\}: z_{k}=1, f_{k}(x) \leq 0, \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}\right\} \\
& \mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{N}^{m}, \mathbf{z} \in\{0,1\}^{n_{k}}
\end{aligned}
$$

Can we formulate the convex hull of each disjunction?

Defining "perspective" functions

Given a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, its perspective function denoted $\tilde{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R} \cup\{+\infty\}$ is defined by:
$\tilde{f}(\mathbf{x}, z) \equiv \begin{cases}z f(\mathrm{x} / z) & \text { if } z>0, \\ +\infty & \text { if } z \leq 0 .\end{cases}$

Defining "perspective" functions

$$
\tilde{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R} \cup\{+\infty\}, \tilde{f}(\mathbf{x}, z) \equiv \begin{cases}z f(\mathbf{x} / z) & \text { if } z>0 \\ +\infty & \text { if } z \leq 0\end{cases}
$$

Defining "perspective" functions

$$
\tilde{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R} \cup\{+\infty\}, \tilde{f}(\mathbf{x}, z) \equiv \begin{cases}z f(\mathbf{x} / z) & \text { if } z>0 \\ +\infty & \text { if } z \leq 0\end{cases}
$$

Defining "perspective" functions

$$
\tilde{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R} \cup\{+\infty\}, \tilde{f}(\mathbf{x}, z) \equiv \begin{cases}z f(\mathbf{x} / z) & \text { if } z>0 \\ +\infty & \text { if } z \leq 0\end{cases}
$$

Defining "perspective" functions

$$
\tilde{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R} \cup\{+\infty\}, \tilde{f}(\mathbf{x}, z) \equiv \begin{cases}z f(\mathbf{x} / z) & \text { if } z>0 \\ +\infty & \text { if } z \leq 0\end{cases}
$$

$\mathrm{z}=0.05$

State of the art in convex analysis

\square Günlük and Linderoth (2008) defined $\operatorname{conv}\left(\Gamma_{0} \cup \Gamma_{1}\right)$ in the space of original variables when Γ_{0} is restrained to a single point.

A new challenge

\square The union of a hyper-rectangle and a closed convex bounded set

A new challenge

\square Ceria and Soares characterize the convex hull in an extended space
\square A relatively important number of added variables
\square Non efficient in practice (Heavy formulations)
\square Can we formulate the convex hull in the space of original variables?

A new challenge

Definition:

Let $f: E \rightarrow \mathbb{R}, E \subseteq \mathbb{R}^{n}, f$ is independently increasing (resp. decreasing) on the i th coordinate if: $\forall x=\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right) \in \operatorname{dom}(f), x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right) \in \operatorname{dom}(f)$ s.t. $x_{i}^{\prime} \geq$ $x_{i} \Rightarrow f\left(x^{\prime}\right) \geq($ resp. $\leq) f(x)$.

We say that f is independently monotone on the i th coordinate if it is independently increasing or independently decreasing on this given coordinate.
f is order preserving if it is independently monotone on each and every coordinate.

A new challenge

Example:

Consider the following functions:

1. $f\left(x_{1}, x_{2}, x_{3}\right)=e^{\left(2 x_{1}-x_{2}\right)}+x_{3},\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, f$ is independently increasing on coordinate 1 and 3 , independently decreasing on coordinate 2 , therefore it is an order preserving function.
2. $f(x, y)=x^{4}+y^{2},(x, y) \in \mathbb{R}^{2}$, the variation of f depends on the sign of the variables, f is not order preserving.
3. $f(x)=\sum_{i=1}^{n} \frac{1}{c_{i}-x_{i}}$, where $x \in \mathbb{R}^{n}$. Since f is a sum of univariate increasing functions, it is an order preserving function.

Additive functions which are sum of univariate monotone functions are commonly encountered order preserving functions.

A new result (simple version)

Let:
$f\left(E \rightarrow \mathbb{R}, E \subseteq \mathbb{R}^{n}\right)$, be a closed convex function, i.i. on all coordinates,

$$
\begin{aligned}
& \Gamma_{0}=\left\{(\mathbf{x}, z) \in \mathbb{R}^{n} \times\{0,1\}: z=0, \mathbf{l}^{0} \leq \mathbf{x} \leq \mathbf{u}^{0}\right\} \\
& \Gamma_{1}=\left\{(\mathbf{x}, z) \in \mathbb{R}^{n} \times\{0,1\}: z=1, f(x) \leq 0, \mathbf{l}^{1} \leq \mathbf{x} \leq \mathbf{u}^{1}\right\}
\end{aligned}
$$

then $\operatorname{conv}\left(\Gamma_{0} \cup \Gamma_{1}\right)=\operatorname{cl}(\Gamma)$,
where $\Gamma=\left\{\begin{array}{l}(\mathbf{x}, z) \in \mathbb{R}^{n+1}: \\ z q_{S}(x / z) \leq 0, \forall S \subset\{1,2, \ldots, n\}, \\ z \mathbf{1}^{\mathbf{1}}+(1-z) \mathbf{1}^{0} \leq \mathbf{x} \leq z \mathbf{u}^{\mathbf{1}}+(1-z) \mathbf{u}^{0}, \\ 0<z \leq 1\end{array}\right\}$
with $q_{S}=\left(f \circ h_{S}\right), h_{S}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$ defined by $\left(h_{S}(x)\right)_{i}=\left\{\begin{array}{l}l_{i}^{1} \forall i \in S, \\ x_{i}-\frac{(1-z) u_{i}^{0}}{z} \forall i \notin S,\end{array}\right.$

A new result (simple version)

\square One constraint captivating the nonlinearity of the convex hull

For $S=\emptyset, \Gamma_{\emptyset}=\left\{\begin{array}{l}(\mathbf{x}, z) \in \mathbb{R}^{n+1}: \\ z f\left(\frac{\mathbf{x}-(1-z) \mathbf{u}^{0}}{z}\right) \leq 0, \\ z \mathbf{l}^{\mathbf{1}}+(1-z) \mathbf{l}^{0} \leq \mathbf{x} \leq z \mathbf{u}^{\mathbf{1}}+(1-z) \mathbf{u}^{0}, \\ 0<z \leq 1 .\end{array}\right\}$,
$\square \quad \Gamma_{\emptyset}$ coincide with the convex hull on an important region:
\square all points verifying the system $z l^{1}+(1-z) u^{0} \leq x$

Some elements of proof

$\frac{2 \cdot 2}{3!}=$
5
48
8

$$
\sum_{(x)}^{\left(\mu_{p}\right)}+T_{\mu}
$$

$$
(T)=
$$

$0+d d(E R-)^{2} \rightarrow A\left(g(c \cdot), C_{r} \rightarrow\right)^{i} \rightarrow$

MINLPs relaxations

\square The Big-M formulation
\square Compact model
\square Bad relaxations
\square The new disjunctive formulation

\square Compact model
\square Good relaxations

Our motivating application: the delay constrained routing problem

\square Multi-Flow Routing under differentiated delay guarantees
\square Different delays corresponding to different services
\square The delay function is a non linear exponentially increasing function $\left(\frac{1}{c_{e}-f_{e}}\right)$
\square A set of candidate paths given by traffic engineers
\square Suitable for centralized routing protocols (implemented in backbone networks)

Our motivating application: the delay constrained routing problem

$$
\begin{aligned}
& z_{k}^{i} \in\{0,1\}, \\
& \phi_{k}^{i} \in[0,1], \\
& x_{e} \in \mathbb{R},
\end{aligned}
$$

Our motivating application: the delay constrained routing problem

$$
\begin{aligned}
& \phi_{k}^{i} \leq z_{k}^{i}, \\
& z_{k}^{i} \in\{0,1\}, \\
& \phi_{k}^{i} \in[0,1], \\
& x_{e} \in \mathbb{R},
\end{aligned}
$$

Our motivating application: the delay constrained routing problem

$$
\begin{array}{ll}
\sum_{P_{k}^{i} \in P(k)} z_{k}^{i} \leq N, & \forall k \in K \\
\phi_{k}^{i} \leq z_{k}^{i}, & \forall k \in K, \forall P_{k}^{i} \in P(k) \\
z_{k}^{i} \in\{0,1\}, & \forall k \in K, \forall P_{k}^{i} \in P(k) \\
\phi_{k}^{i} \in[0,1], & \forall k \in K, \forall P_{k}^{i} \in P(k) \\
x_{e} \in \mathbb{R}, & \forall e \in E .
\end{array}
$$

Our motivating application: the delay constrained routing problem

$$
\begin{array}{ll}
x_{e} \leq c_{e}, \forall e \in E & \\
\sum_{e \in P_{k}^{i}} \frac{1}{c_{e}-x_{e}} \leq \alpha_{k}, & \forall k \in K, \forall P_{k}^{i} \in P(k) i \\
\sum_{P_{k}^{i} \in P(k)} z_{k}^{i} \leq N, & \forall k \in K \\
\phi_{k}^{i} \leq z_{k}^{i}, & \forall k \in K, \forall P_{k}^{i} \in P(k) \\
z_{k}^{i} \in\{0,1\}, & \forall k \in K, \forall P_{k}^{i} \in P(k) \\
\phi_{k}^{i} \in[0,1], & \forall k \in K, \forall P_{k}^{i} \in P(k) \\
x_{e} \in \mathbb{R}, & \forall e \in E .
\end{array}
$$

Our motivating application: the delay constrained routing problem

$$
\begin{array}{ll}
\sum_{k \in K} \sum_{P_{k}^{i} \ni l} \phi_{k}^{i} v_{k} \leq x_{e}, & \forall e \in E \\
x_{e} \leq c_{e}, \forall e \in E & \\
\sum_{e \in P_{k}^{i}} \frac{1}{c_{e}-x_{e}} \leq \alpha_{k}, & \forall k \in K, \\
\sum_{P_{k}^{i} \in P(k)} z_{k}^{i} \leq N, & \forall k \in K \\
\phi_{k}^{i} \leq z_{k}^{i}, & \forall k \in K, \\
z_{k}^{i} \in\{0,1\}, & \forall k \in K, \\
\phi_{k}^{i} \in[0,1], & \forall k \in K, \\
x_{e} \in \mathbb{R}, & \forall e \in E .
\end{array}
$$

Our motivating application: the delay constrained routing problem

$$
\begin{aligned}
& \sum_{i=1}^{n_{k}} \phi_{k}^{i} \geq 1 \\
& \sum_{k \in K} \sum_{P_{k}^{i} \ni l} \phi_{k}^{i} v_{k} \leq x_{e} \\
& x_{e} \leq c_{e}, \forall e \in E \\
& \sum_{e \in P_{k}^{i}} \frac{1}{c_{e}-x_{e}} \leq \alpha_{k} \\
& \sum_{P_{k}^{i} \in P(k)} z_{k}^{i} \leq N \\
& \phi_{k}^{i} \leq z_{k}^{i} \\
& z_{k}^{i} \in\{0,1\} \\
& \phi_{k}^{i} \in[0,1] \\
& x_{e} \in \mathbb{R}
\end{aligned}
$$

Our motivating application: the delay constrained routing problem

$$
\begin{array}{ll}
\min & \sum_{e \in E} w_{e} x_{e} \\
\sum_{i=1}^{n_{k}} \phi_{k}^{i} \geq 1, & \forall k \in K \\
\sum_{k \in K} \sum_{P_{k}^{i} \ni l} \phi_{k}^{i} v_{k} \leq x_{e}, & \forall e \in E \\
x_{e} \leq c_{e}, \forall e \in E & \\
& \forall k \in K, \forall P_{k}^{i} \in P(k) \text { if } z_{k}^{i}=1 \\
\sum_{e \in P_{k}^{i}} \frac{1}{c_{e}-x_{e}} \leq \alpha_{k}, & \forall k \in K \\
\sum_{i} z_{k}^{i} \leq N, & \forall k \in K, \forall P_{k}^{i} \in P(k) \\
& \\
\phi_{k}^{i} \leq z_{k}^{i}, & \forall k \in K, \forall P_{k}^{i} \in P(k) \\
z_{k}^{i} \in\{0,1\}, & \forall k \in K, \forall P_{k}^{i} \in P(k) \\
\phi_{k}^{i} \in[0,1], & \forall e \in E \\
x_{e} \in \mathbb{R},
\end{array}
$$

Our motivating application: the delay constrained routing problem

\square The delay constraint is an on/off constraint!

$$
\begin{aligned}
& \sum_{e \in P_{k}^{i}} \frac{1}{c_{e}-x_{e}} \leq \alpha_{k}, \forall k \in K, \forall P_{k}^{i} \in P(k) \text { if } z_{k}^{i}=1 \\
& 0 \leq x_{e} \leq u_{e}, \forall e \in P_{k}^{i}, \text { if } z_{k}^{i}=0
\end{aligned}
$$

\square Candidate formulations:

$$
\begin{gathered}
\sum_{e \in P_{k}^{i}} \frac{1}{c_{e}-x_{e}} \leq M-z_{k}^{i}\left(M-\alpha_{k}\right), \forall k \in K, \forall P_{k}^{i} \in P(k) \\
\sum_{e \in P_{k}^{i}}\left(\frac{z_{k}^{2^{2}}}{z_{k}^{i} c_{e}-x_{e}+\left(1-z_{k}^{i}\right) u_{e}}\right)-z_{k}^{i} \alpha_{k} \leq 0, \forall k \in K, \forall P_{k}^{i} \in P(k)
\end{gathered}
$$

Computational experiments

Implemented models in Bonmin (open MINLP solver)

	$\|\mathrm{V}\|$	$\|\mathrm{E}\|$	$\|\mathrm{K}\|$	P_bigM	P_proj
rdata1	60	280	100	$(2.7 ; 0)$	$\mathbf{(2 . 4 ; 0)}$
rdata2	61	148	122	$(25 ; 0)$	$\mathbf{(1 3} ; \mathbf{0)}$
rdata3	100	600	200	$([0.28 \%] ; 157748)$	$\mathbf{(3 4 4 ; 5 0 9 7)}$
rdata4	34	160	946	$([0.001 \%] ; 79807)$	$\mathbf{(1 5 2 5 ; 5 0 5 8 3)}$
rdata5	67	170	761	$([0.43 \%] ; 138618)$	$([0.03 \%] ; \mathbf{2 0 2 1 2 2})$
rdata6	100	800	500	$([0.006 \%] ; 176413)$	$\mathbf{(9 3 4 ; 1 9 3 5 1)}$

Mono-routing constraints 3 candidate paths per demand

Computational experiments

	$\|\mathrm{V}\|$	$\|\mathrm{E}\|$	$\|\mathrm{K}\|$	P_bigM	P_proj
rdata1	60	280	100	$(799.7 ; 12633)$	$(220.8 ; \mathbf{1 9 2 2)}$
rdata2	61	148	122	$(\mathbf{1 6 . 1} ; \mathbf{0})$	$(24.8 ; 0)$
rdata3	100	600	200	$([0.08 \%] ; 94194)$	$(768.6 ; 5207)$
rdata4	34	160	946	$([0.4 \%] ; 40820)$	$([0.04 \%] ; 45492)$
rdata5	67	170	761	$([1.2 \%] ; 16106)$	$(5467.7 ; \mathbf{1 7 3 4 7})$
rdata6	100	800	500	$([0.7 \%] ; 5880)$	$\mathbf{(5 3 9 2 ; 2 3 8 6 7)}$

[^0]
Conclusion-Perspectives

\square Results apply for a general class of MINLPs
\square New efficient tight formulations
\square Looking closely at the case of linear functions : new non-trivial MIP cuts

Questions

<unt.

[^0]: Multiple-routing constraints 10 candidate paths per demand

