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Mathematical programming

We are interested in optimization problems that can be modeled as follows:

min f (x) =
n∑

i=1

fi (xi ) (1)

s.t.

Ax ≥ b (2)
x ∈ X , X ⊂ Rn × Zn−p (3)

nonlinear f MINLP
linear f MILP

Numerous fields of application
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Classical MINLP solution methods

Generic MINLP solution methods / Hybrid algorithms and frameworks
Grossmann 2002 / Bonami et al., 2008

+ global optimality guaranteed if carried out to completion

- restricted to small/medium instances in the absence of specific properties

MILP-based solution methods on similar problems
Camponogara et al. 2011; Borghetti et al., 2008

• approximate with piecewise linear functions Approximating nonlinear functions with PWL functions

Modeling the PWL functions in a MILP

Solving MILPs containing PWL functions

satisfactory solution ?

No

DONE

Yes

+ (more) tractable problems

- try and error approach: No guarantees on the solution quality or iterative process with an
undefined number of iterations

- global optimality cannot be guaranteed
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Spatial branch-and-bound

• Spatial branch-and-bound
1. Maintain global LBs and UBs
2. Solve a convex relaxation of a problem, compute LBs and UBs along

the way
3. If global optimality is not proven, split the space into two subregions
4. Tighten the convex relaxation for each subregion separately and get

back to 2
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Piecewise linear approximations

• Constructs a continuous piecewise linear function that interpolates the
nonlinear function at the breakpoints

• The finer the granularity, the better the approximation

• Numerical guarantees are dependent on the size of the discretization

• Usually tractable only for very rough guarantees on very large problems
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Piecewise linear approximations and Adaptive refinement

Find a global optimal solution of the MINLP by solving a series of MIP
relaxations with gradually increasing accuracy.
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Burlacu et al. (2020, 2021)

Consider MINLPs with a linear objective and nonlinear constraints

• 2 critical components: (i) how the piecewise linear functions are defined, and
(ii) their refinement procedure.

• Proves that the algorithm terminates after a finite number of steps NB(ε)

• Mixed Integer Polyhedron to compute lower bounds

• NLP solvers/oracles compute maximal linearization errors after split
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Nagarajan et al. (2019, solver Alpine.jl)

• Split the domain into 3 sections: the size of the middle section
depends on a user parameter ∆

• e.g. ∆ = 8⇒ 1
4 th of the domain

• Provides a proof of convergence when the number of breakpoints
increases to infinity

• Open source solver Alpine.jl
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Our algorithm

• precision-driven refinement instead of domain-driven
• not necessarily continuous piecewise linear lower bounding

approximations
• We do not require our piecewise linear approximation to interpolate

the nonlinear function at breakpoints
• Solve a MIP that provides upper and lower bounds
• If we are unhappy with the result, we only tighten the necessary pieces
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Our algorithm

Proposition

If the domain of each variable xi is bounded within the interval [li , ui ] with
li ≤ ui , our algorithm ends in at most

N(ε) =
⌈

log2

(ε0
ε

)⌉ n∑
i=1

⌈
ui − li
δ

⌉
(4)

iterations and provides a solution x∗ that if far from the optimal by at
most ε.

Proposition

For every ε > 0, N(ε) ≤ O(log(NB(ε))).
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Our algorithm

• Keep the scope of the updates local ⇒ tractability is not lost
• Refinement based on a target precision, not an arbitrary number of

breakpoints
• Regions of the space that seem unpromising may never be tightened!
• On high dimensions this plays a critical role when going to very small

numerical precisions

Sandra Ulrich NGUEVEU (Toulouse INP - LAAS-CNRS) JFRO-AIRO 2022 11/25



Applications

• We consider four classes of optimization problems
• Capacitated facility location with nonlinear warehousing costs
• Capacitated facility location with nonlinear assignment costs
• Transportation problem with nonlinear transportation costs
• Multi-comodity network design problem with nonlinear costs
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Computational experiments
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Computational experiments

Inst. Alpine CN2021 Inst. Alpine CN2021
2_1 13.43 0.15 3_1 TLIM 29.33
2_2 ERR 0.85 3_2 TLIM 1.1
2_3 25.84 1.05 3_3 TLIM 6.62
2_4 29.34 1.09 3_4 TLIM 4.45
2_5 TLIM 0.22 3_5 TLIM 4.53
2_6 2.13 0.27 3_6 TLIM 11.08
2_7 ERR 0.16 3_7 TLIM 19.37
2_8 1.84 0.16 3_8 TLIM 11.83
2_9 19.92 0.19 3_9 TLIM 2.29
2_10 ERR 0.93 3_10 TLIM 3.95
Moy. 15.4∗ 0.5 Moy. TLIM 8.68

Table 1: CPU(s) d’Alpine vs our Algorithm on small instances (2x2 et 3x3) of the
transportation problem
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Key subproblem that needs to be solved efficiently

Precision-driven initialization and precision-driven refinement

⇓�� ��Minimize #pieces under bounded tolerance constraints
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Min #pieces s.t. bounded tolerance constraints

Why is the Problem Hard?

• semi-infinite programming
• Maximizing the domain length of each segment is not optimal

Few pre-existing studies (Continuous PWL approximation):

• [Rosen and Pardalos, 1986], [Frenzen, Sasao and Butlerc, 2010], [Rebennack and Kallrath
2015], [Rebennack and Krasko 2019], [Kong, Maravelias 2020]
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Non necessarily continuous (nnc) PWL

[Ngueveu - LAAS 2016, EJOR 2019] Getting rid of the continuity

Theorem
∀ continuous function f : D = [X−,X+]→ R and any scalar δ ∈ R+, there exists
an optimal nnc δ-PWLA g defined by G =

⋃ng
i=1([ai , bi ], [x

min
i , xmax

i ]) such that
each line-segment i has a maximal length projection on the interval [xmin

i ,X+].

The greedy algorithm becomes optimal
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A geometric approach based on corridors

Definition (Corridor)

Let h, l : [a, b]→ R C 1 h(x) > l(x),∀x ∈ [a, b]. We call
C = {(x , y)|x ∈ [a, b], l(x) ≤ y ≤ h(x)} a corridor between h and l .

generalizes widely used pointwise error metrics (e.g. absolute or relative)

can be used to approximate, underestimate and overestimate functions

Codsi, Gendron, Ngueveu (2019-2022)
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Convex corridor

Theorem (Convex corridor segment characterization)
On convex corridor C there exists an optimal linear segment such that

• Both ends lie on the lower curve
• it is tangent to the upper curve

⇒ logarithmic convergence (for each segment)

Codsi, Gendron, Ngueveu (2019-2022)
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Corridors without constant convexity

Splitting the corridor into sub-corridors convex or concave

+ parallelizable
+ Efficient
- Heuristic Not necessarily optimal but the
error is tightly bounded

n∗ ≤ n ≤ n∗ + #Sub-corridors− 1

O’Rourke adaptation
based on function sampling and constraints on the line coefficient space

+ Exact
- Not as efficient

LinA Package http://homepages.laas.fr/sungueve/LinA.html
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Computational evaluation of our PWL computations

f (x) = 2x2 + x3

δ continuous nnc
Exact exact heuristic

[RK2015] [RK2019] [Ng2019] LinA [Ng2019] LinA
0.1 Minutes 24 s 115 s 2.9 s 11 s 0.008 s
0.05 Few days 107 s 88 s 3.0 s 17 s 0.01 s
0.005 − 35787 s 195 s 2.8 s 59 s 0.03 s

Multicommodity network design with congestion

instance literature LinA+CPLEX
c36_8_8 21.53 s 14.59 s
c49_8_6 172.25 s 118.17 s
c50_8_6 2609.57 s 2575.08 s

• easy to implement but can already be as good as advanced state of the
art solution methods

• no consideration on the problem structure
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Impact of arbitrary ε precisions

Strengths of the baseline method using LinA

• one-shot
• computational effort focussed on solving a single MILP

Bound each nonlinear function with 2 PWL functions

Solving MILPs containing PWL functions

Modeling the PWL functions in a MILP

DONE

Weaknesses of the baseline method if a very small precision ε is requested

• size of the resulting MILP
• internal precisions of LinA or of the MILP solution method

⇒ Usually tractable only for very rough guarantees on very large problems
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Decremental / Iterative sampling

Find a small sample whose optimal solution is that of the original problem,
and build an optimal solution from enlarging that sample.

Used successfully for variety of problems, mostly related to clustering.

• minimax location-allocation problem: Chen and Handler (1987)

• interdiction problems with fortification: Lozano and Smith (2017)

• minimax diameter clustering problem: Daniel and Contardo (2018)

• p-center problem: Chen and Chen (2009), Contardo, Iori, Kramer (2019)

• p-dispersion problem : Contardo (INFORMS 2020)
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Can similar ideas be applied to improve the baseline method
?

⇓
Adaptive refinement

⇓
Find a global optimal solution of the MINLP by solving a

series of MIP relaxations with gradually increasing accuracy.

⇓
Iterative algorithm: see part 1 of the talk
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Conclusion

In summary

• We present an iterative procedure to solve a class of linearly
constrained MINLPs a predefined numerical precision

• Among the keys components, let us mention (i) local refinement, (ii)
the ability to compute optimal piecewise linear functions with a
bounded error

• Piecewise linearizations are computed using LinA available at
http://homepages.laas.fr/sungueve/LinA.html

What next ?

• dedicated solution method
• extension to nonlinear functions not linearly separable ?
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Useful Tools / Julia Packages

LinA: Computing a PWL approximation, over-/under-estimators
with minimum # linear segments

• link: http://homepages.laas.fr/sungueve/LinA.html
• https://github.com/LICO-labs

• input : a univariate continuous nonlinear function
• output : a nnc PWL function with minimum number of pieces
• related reference: Codsi, Gendreau, Ngueveu (2019-HAL)

PiecewiseLinearOpt: Modeling efficiently a given continuous PWL
function in MILP

• https://github.com/joehuchette/PiecewiseLinearOpt.jl

• input : a continuous PWL function (or sampled nonlinear fct)
• output : variables and constraints to insert in a MILP
• related reference: Huchette and Vielma (2018-arXiv)
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