Valentina Cacchiani

Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Italy

November 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

- Introduction to Train Timetabling
- Models based on time-expanded graphs
- Solution methods
- Generalization to skip-stop planning strategies and passenger-centric objectives

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Train Timetabling

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Railway Optimization Stages

Figure from Lusby, R. M., Larsen, J., Bull, S. (2017). A survey on robustness in railway planning. European Journal of Operational Research.

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ⊙ < ⊙

Train Timetabling

- It consists of finding an optimal schedule of trains in a railway network satisfying:
 - safety regulations (e.g., minimum headway times between consecutive trains on the same track) and
 - operational constraints (e.g., running times, dwell times, station capacity)
- The schedule is defined by the departure and arrival times of trains at all visited stations
- The objective function depends on the railway company (e.g., schedule as many trains as possible)

12.00	11 607 16 03100 & 00	BARI CENTRALE 19:00 Foreina 12:37 - Foreina 12:46 - Reniel 13:08 - Recisen 13:17 - Cathideus GC-G, 13:29 - Fueren 13:35 Norde 14:40 - Foreita Schergen 14:45 - Stewardten dei 1.15:14 - Gularsons 15:29 - Pesaren 15:57 - Vate-Scher 14:50 - Terroit 14:54 - Skewerdten 15: 19:20 - Terroit 14:54 - Skewerdten 17:15 - Foreigen 17:53 - Resteris 18:05 - Toroit 18:15 - Boogle 18:23 - mens 10:50 (Tord 19:79:91)	0
12.03	ITA 9916 Jtalo ITAD AV BES	MILANO CENTRALE 13.15 Reggie E. AV Medie P 12.22 - Milano Regeredo 13.03 -	0
12.04	11 6351 77 00	PORETTA TEAME 13.14 Biologo Storp Man, 12.10 - Casteletoko 12.13 - Casteletoko G. 12.17 - Casteletoko 12.03 - Biogenovo 12.24 - Sano Maccaol 12.29 - Lene d Biore 12.35 - Marshotn 12.38 - Pior d Vinols 12.41 Biore 12.35 - Marshotn 12.38 - Pior d Vinols 12.41 Biol 13.09 - Lezd - Vingel 12.29 - Role 13.01 - CIRCON MICORE(EMB) - CIRCON MICORE(EMB) - CIRCON MICORE(EMB)	OVE
12.04	TER 11489 ቸ መልታ6	PORRITA TERME 13.14 Biologie Storge Ramp; 12.10 - Candidachi 12.13 - Candecabie G. 12.17 - Candidachi 6 Rein 11.20 - Biogeneues 12.24 - Sano Marcen 12.29 - Lenie di Rein 12.35 - Marzabate 12.28 - Rein di Vestel 12.01 - Forget di Salveno 12.64 - Vergetz 12.20 - Kole 12.01 - 56 - Sano Sciculare Indexe (WWW) (SAN SCIENC) - Marz (SAN FRO)	Ove
12.06*	∏ 6477 ₱ ₪6%	RAVENNA 13.27 Bologne S Vacia 12.10 - S.lazano di S. 12.13 - Oznano dal'Endie 12.19 - Canel S Neiro T. 12.27 - India 12.34 - Combibility of the Canel S Neiro T. 12.27 - India 12.34 - Bagnozovski 13.04 - Rait 13.10 - God 13.14 - + And CARCOA HIG CORD (TIG)	0
12.08	TI 9414	VENEZIA SLUCIA 13.35 Padova 13.07 - Venezia Mettre 13.23 -	Ø

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Railway infrastructure

- The railway infrastructure consists of a network with:
 - nodes: represent the locations where the trains may interact
 - tracks: connect the nodes and are used by the trains to travel from one node to the next one

└─ Train Timetabling

Trains to be scheduled

The trains to be scheduled are determined based on the passenger demand and can be given in input in two different ways:

Trains to be scheduled

- The trains to be scheduled are determined based on the passenger demand and can be given in input in two different ways:
 - 1. A set of train lines (a route between an origin and a destination station with a specific stopping pattern) and a frequency of the train line

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Trains to be scheduled

- The trains to be scheduled are determined based on the passenger demand and can be given in input in two different ways:
 - 1. A set of train lines (a route between an origin and a destination station with a specific stopping pattern) and a frequency of the train line
 - 2. An ideal timetable for each train provided by the Train Operator that specifies the departure and arrival times at each visited station of the railway network

Constraints

minimum headway time between consecutive trains using the same track

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

forbid overtaking and crossing of trains on the same track

Constraints

- minimum headway time between consecutive trains using the same track
- forbid overtaking and crossing of trains on the same track
- Iower and upper limits on the dwelling time of a train at a station
- lower and upper limits on the running time of a train on a track

Constraints

- minimum headway time between consecutive trains using the same track
- forbid overtaking and crossing of trains on the same track
- Iower and upper limits on the dwelling time of a train at a station
- lower and upper limits on the running time of a train on a track
- acceleration and deceleration times when a train stops at a station
- maximum number of trains simultaneously present at a station
- connection constraints for passengers transfers

Constraints

- minimum headway time between consecutive trains using the same track
- forbid overtaking and crossing of trains on the same track
- Iower and upper limits on the dwelling time of a train at a station
- lower and upper limits on the running time of a train on a track
- acceleration and deceleration times when a train stops at a station
- maximum number of trains simultaneously present at a station
- connection constraints for passengers transfers

• • • •

Periodic and non-periodic timetabling

Periodic (or cyclic): the schedule of the trains is repeated every given time period (for example every hour)

Periodic and non-periodic timetabling

- Periodic (or cyclic): the schedule of the trains is repeated every given time period (for example every hour)
- Non-periodic (or non-cyclic): the schedule of the trains is the same every day, it is appropriate for more congested network

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Periodic and non-periodic timetabling

- Periodic (or cyclic): the schedule of the trains is repeated every given time period (for example every hour)
- Non-periodic (or non-cyclic): the schedule of the trains is the same every day, it is appropriate for more congested network
- In this talk, we focus on:
 - Starting from an ideal timetable for each train
 - Schedule as many trains as possible and minimize the changes with respect to the ideal timetables

Periodic and non-periodic timetabling

- Periodic (or cyclic): the schedule of the trains is repeated every given time period (for example every hour)
- Non-periodic (or non-cyclic): the schedule of the trains is the same every day, it is appropriate for more congested network
- In this talk, we focus on:
 - Starting from an ideal timetable for each train
 - Schedule as many trains as possible and minimize the changes with respect to the ideal timetables
 - First the non-periodic problem (scheduling trains for a day)

Periodic and non-periodic timetabling

- Periodic (or cyclic): the schedule of the trains is repeated every given time period (for example every hour)
- Non-periodic (or non-cyclic): the schedule of the trains is the same every day, it is appropriate for more congested network
- In this talk, we focus on:
 - Starting from an ideal timetable for each train
 - Schedule as many trains as possible and minimize the changes with respect to the ideal timetables
 - First the non-periodic problem (scheduling trains for a day) and then a periodic problem (scheduling trains for one hour)

Models based on time-expanded graphs

Models based on time-expanded graphs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Non-periodic Train Timetabling - one-way line

- $S = \{1, \ldots, s\}$: set of stations
- T: set of trains each with:
 - an assigned importance (e.g., high-speed, local, freight)

an ideal timetable

Non-periodic Train Timetabling - one-way line

- $S = \{1, \ldots, s\}$: set of stations
- T: set of trains each with:
 - an assigned importance (e.g., high-speed, local, freight)

- an ideal timetable
- Time discretization (e..g, one minute)

Non-periodic Train Timetabling - one-way line

- $S = \{1, \ldots, s\}$: set of stations
- T: set of trains each with:
 - an assigned importance (e.g., high-speed, local, freight)
 - an ideal timetable
- Time discretization (e..g, one minute)
- The goal is to maximize the total importance of the scheduled trains and minimize the changes to the ideal timetables

Changes to the ideal timetables

Changes can be applied to obtain a feasible timetable (without train conflicts):

Changes to the ideal timetables

Changes can be applied to obtain a feasible timetable (without train conflicts):

- change the departure and/or arrival times of some trains at some of the visited stations → shift
- increase the dwell time of some trains at some of the visited stations → stretch

cancel (= not schedule) a train

Changes to the ideal timetables

Changes can be applied to obtain a feasible timetable (without train conflicts):

- change the departure and/or arrival times of some trains at some of the visited stations → shift
- increase the dwell time of some trains at some of the visited stations → stretch
- cancel (= not schedule) a train
- Lower and Upper limits are imposed for these changes:
 maximum shift at the departure station for each train
 maximum total stretch

Models based on time-expanded graphs

Time-expanded graph

Time-Space Graph model by Caprara, Fischetti and Toth (2002)

Models based on time-expanded graphs

Time-expanded graph

 Time-Space Graph model by Caprara, Fischetti and Toth (2002)

• time-space graph G = (V, A):

Models based on time-expanded graphs

Time-expanded graph

 Time-Space Graph model by Caprara, Fischetti and Toth (2002)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• time-space graph G = (V, A):

Time-expanded graph

- Time-Space Graph model by Caprara, Fischetti and Toth (2002)
- time-space graph G = (V, A):

■ V: train departure W^i and arrival U^k times from/at stations $(i \in S \setminus \{s\}, k \in S \setminus \{1\})$

Time-expanded graph

- Time-Space Graph model by Caprara, Fischetti and Toth (2002)
- time-space graph G = (V, A):

- V: train departure W^i and arrival U^k times from/at stations $(i \in S \setminus \{s\}, k \in S \setminus \{1\})$
- $A = A^1 \cup, \dots, \cup A^{|\mathcal{T}|}$: starting, segment (travel), station (stop) and ending arcs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Time-expanded graph

- Time-Space Graph model by Caprara, Fischetti and Toth (2002)
- time-space graph G = (V, A):

- V: train departure W^i and arrival U^k times from/at stations $(i \in S \setminus \{s\}, k \in S \setminus \{1\})$
- $A = A^1 \cup, \dots, \cup A^{|\mathcal{T}|}$: starting, segment (travel), station (stop) and ending arcs
- x_a : binary variable equal to 1 iff arc *a* is selected ($t \in T$, $a \in A^t$)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Time-expanded graph

- Time-Space Graph model by Caprara, Fischetti and Toth (2002)
- time-space graph G = (V, A):

- V: train departure W^i and arrival U^k times from/at stations $(i \in S \setminus \{s\}, k \in S \setminus \{1\})$
- $A = A^1 \cup, \dots, \cup A^{|\mathcal{T}|}$: starting, segment (travel), station (stop) and ending arcs
- x_a : binary variable equal to 1 iff arc *a* is selected ($t \in T$, $a \in A^t$)

A path in G from σ to τ corresponds to a timetable for a train

An example

	Ideal Timetable A		Ideal Timetable B		Ideal Timetable C	
Stations	Arr. Time	Dep. Time	Arr. Time	Dep. Time	Arr. Time	Dep. Time
1		9:00		9:00		
2	9:05	9:07	9:10	9:12		
3	9:18		9:30	9:35		9:33
4			10:00	10:03	10:02	10:07
5			10:20		10:24	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

An example

	Ideal Timetable A		Ideal Timetable B		Ideal Timetable C	
Stations	Arr. Time	Dep. Time	Arr. Time	Dep. Time	Arr. Time	Dep. Time
1		9:00		9:00		
2	9:05	9:07	9:10	9:12		
3	9:18		9:30	9:35		9:33
4			10:00	10:03	10:02	10:07
5			10:20		10:24	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An example

	Ideal Timetable A		Ideal Timetable B		Ideal Timetable C	
Stations	Arr. Time	Dep. Time	Arr. Time	Dep. Time	Arr. Time	Dep. Time
1		9:00		9:00		
2	9:05	9:07	9:10	9:12		
3	9:18		9:30	9:35		9:33
4			10:00	10:03	10:02	10:07
5			10:20		10:24	

◆□> ◆□> ◆三> ◆三> ● 三 のへの

└─ Models based on time-expanded graphs

ILP arc-model

■ p_a : profit associated with each arc $a \in A$: importance of the train minus penalties for the changes
└─ Models based on time-expanded graphs

ILP arc-model

$$\max \sum_{t \in T} \sum_{a \in A^t} p_a x_a$$

■ p_a : profit associated with each arc $a \in A$: importance of the train minus penalties for the changes

$$\begin{split} &\sum_{a\in\delta_t^+(\sigma)} x_a \leq 1, \qquad t\in \mathcal{T}, \\ &\sum_{a\in\delta_t^-(v)} x_a = \sum_{a\in\delta_t^+(v)} x_a, \qquad t\in \mathcal{T}, v\in V\setminus\{\sigma,\tau\}, \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

└─ Models based on time-expanded graphs

ILP arc-model

$$\max \sum_{t \in T} \sum_{a \in A^t} p_a x_a$$

■ p_a : profit associated with each arc $a \in A$: importance of the train minus penalties for the changes

$$\begin{split} \sum_{a \in \delta_t^+(\sigma)} x_a &\leq 1, \qquad t \in T, \\ \sum_{a \in \delta_t^-(v)} x_a &= \sum_{a \in \delta_t^+(v)} x_a, \qquad t \in T, v \in V \setminus \{\sigma, \tau\}, \\ \sum_{a \in C} x_a &\leq 1, \qquad C \in \mathcal{C}, \\ x_a \in \{0, 1\}, \qquad a \in A. \end{split}$$

■ C: family of maximal subsets C of pairwise incompatible arcs

└─ Models based on time-expanded graphs

ILP path-model

$$\max \sum_{t \in \mathcal{T}} \sum_{p \in \mathcal{P}^t} \pi_p x_p$$

- x_p : binary variable equal to 1 iff path p is selected $(t \in T, p \in \mathcal{P}^t)$
- π_p: profit associated with each path p ∈ P: importance of the train minus penalties for the changes along the path

└─ Models based on time-expanded graphs

ILP path-model

$$\max \sum_{t \in \mathcal{T}} \sum_{p \in \mathcal{P}^t} \pi_p x_p$$

- x_p : binary variable equal to 1 iff path p is selected $(t \in T, p \in \mathcal{P}^t)$
- π_p: profit associated with each path p ∈ P: importance of the train minus penalties for the changes along the path

$$\sum_{P\in\mathcal{P}^t} x_p \leq 1, \qquad t\in \mathcal{T},$$

└─ Models based on time-expanded graphs

ILP path-model

$$\max \sum_{t \in \mathcal{T}} \sum_{p \in \mathcal{P}^t} \pi_p x_p$$

- x_p : binary variable equal to 1 iff path p is selected $(t \in T, p \in \mathcal{P}^t)$
- π_p: profit associated with each path p ∈ P: importance of the train minus penalties for the changes along the path

$$egin{aligned} &\sum_{P\in\mathcal{P}^t} x_p \leq 1, \qquad t\in\mathcal{T}, \ &\sum_{p\in\mathcal{I}} x_p \leq 1, \qquad \mathcal{I}\in\mathcal{IP}, \ &x_p\in\{0,1\}, \qquad \mathcal{P}\in\mathcal{P}. \end{aligned}$$

■ *IP*: family of maximal subsets *I* of pairwise incompatible paths with incompatibility expressed separately for each station

Solution Methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lagrangian-based Heuristic Algorithm

 Proposed in Caprara, Fischetti and Toth (2002) extended to a network in Cacchiani, Caprara, Toth (2010)

Lagrangian-based Heuristic Algorithm

 Proposed in Caprara, Fischetti and Toth (2002) extended to a network in Cacchiani, Caprara, Toth (2010)

Applied to the ILP arc-model

Lagrangian-based Heuristic Algorithm

- Proposed in Caprara, Fischetti and Toth (2002) extended to a network in Cacchiani, Caprara, Toth (2010)
- Applied to the ILP arc-model
- Incompatibility constraints are relaxed in a Lagrangian way

Lagrangian-based Heuristic Algorithm

- Proposed in Caprara, Fischetti and Toth (2002) extended to a network in Cacchiani, Caprara, Toth (2010)
- Applied to the ILP arc-model
- Incompatibility constraints are relaxed in a Lagrangian way
- Subgradient optimization to determine near-optimal Lagrangian multipliers

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dynamic constraint-generation is used

Lagrangian-based Heuristic Algorithm

- Proposed in Caprara, Fischetti and Toth (2002) extended to a network in Cacchiani, Caprara, Toth (2010)
- Applied to the ILP arc-model
- Incompatibility constraints are relaxed in a Lagrangian way
- Subgradient optimization to determine near-optimal Lagrangian multipliers
- Dynamic constraint-generation is used
- During subgradient optimization, iteratively computes a heuristic solution:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lagrangian-based Heuristic Algorithm

- Proposed in Caprara, Fischetti and Toth (2002) extended to a network in Cacchiani, Caprara, Toth (2010)
- Applied to the ILP arc-model
- Incompatibility constraints are relaxed in a Lagrangian way
- Subgradient optimization to determine near-optimal Lagrangian multipliers
- Dynamic constraint-generation is used
- During subgradient optimization, iteratively computes a heuristic solution:
 - Trains are ranked based on the Lagrangian profit (original train profit and Lagrangian penalties)

Lagrangian-based Heuristic Algorithm

- Proposed in Caprara, Fischetti and Toth (2002) extended to a network in Cacchiani, Caprara, Toth (2010)
- Applied to the ILP arc-model
- Incompatibility constraints are relaxed in a Lagrangian way
- Subgradient optimization to determine near-optimal Lagrangian multipliers
- Dynamic constraint-generation is used
- During subgradient optimization, iteratively computes a heuristic solution:
 - Trains are ranked based on the Lagrangian profit (original train profit and Lagrangian penalties)
 - Trains are scheduled one by one, choosing the conflict-free path with maximum Lagrangian profit → Dynamic Programming

Lagrangian-based Heuristic Algorithm

- Proposed in Caprara, Fischetti and Toth (2002) extended to a network in Cacchiani, Caprara, Toth (2010)
- Applied to the ILP arc-model
- Incompatibility constraints are relaxed in a Lagrangian way
- Subgradient optimization to determine near-optimal Lagrangian multipliers
- Dynamic constraint-generation is used
- During subgradient optimization, iteratively computes a heuristic solution:
 - Trains are ranked based on the Lagrangian profit (original train profit and Lagrangian penalties)
 - Trains are scheduled one by one, choosing the conflict-free path with maximum Lagrangian profit → Dynamic Programming
 - Local search procedures to improve the solution found _ _ _ _ _ _

└─ Solution Methods

Branch-and-Cut-and-Price Algorithm

Proposed in Cacchiani, Caprara, Toth (2008)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

└─ Solution Methods

Branch-and-Cut-and-Price Algorithm

Proposed in Cacchiani, Caprara, Toth (2008)

Applied to the ILP path-model

└─ Solution Methods

Branch-and-Cut-and-Price Algorithm

- Proposed in Cacchiani, Caprara, Toth (2008)
- Applied to the ILP path-model
- Solve the LP-relaxation by column generation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Branch-and-Cut-and-Price Algorithm

- Proposed in Cacchiani, Caprara, Toth (2008)
- Applied to the ILP path-model
- Solve the LP-relaxation by column generation
- Pricing problem: determine an optimal path in the time-expanded graph → Dynamic Programming algorithms

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Constraint separation is applied

Branch-and-Cut-and-Price Algorithm

- Proposed in Cacchiani, Caprara, Toth (2008)
- Applied to the ILP path-model
- Solve the LP-relaxation by column generation
- Pricing problem: determine an optimal path in the time-expanded graph → Dynamic Programming algorithms

- Constraint separation is applied
- Branching is applied on the choice of the arcs in the graph

Branch-and-Cut-and-Price Algorithm

- Proposed in Cacchiani, Caprara, Toth (2008)
- Applied to the ILP path-model
- Solve the LP-relaxation by column generation
- Pricing problem: determine an optimal path in the time-expanded graph → Dynamic Programming algorithms
- Constraint separation is applied
- Branching is applied on the choice of the arcs in the graph
- Constructive heuristics: LP-based fixing of paths or arcs in the graph

Generalization to include additional real-life features

Generalization to include additional real-life features

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Generalization to include additional real-life features

Skip-stop planning strategies

・ロト・日本・ヨト・ヨト・日・ つへぐ

Skip-stop planning strategies¹

¹F. Jiang, V. Cacchiani, P. Toth. Train Timetabling by Skip-Stop Planning in Highly Congested Lines. Transportation Research Part B, 104, 149-174, 2017.

Generalization to include additional real-life features

Skip-stop planning strategies¹

An additional change to the ideal timetables: it is possible to skip a stop (= not schedule a stop)

¹F. Jiang, V. Cacchiani, P. Toth. Train Timetabling by Skip-Stop Planning in Highly Congested Lines. Transportation Research Part B, 104, 149-174, 2017.

Skip-stop planning strategies¹

- An additional change to the ideal timetables: it is possible to skip a stop (= not schedule a stop)
- The case study is the high-speed double-track line Beijing-Shanghai in China

¹F. Jiang, V. Cacchiani, P. Toth. Train Timetabling by Skip-Stop Planning in Highly Congested Lines. Transportation Research Part B, 104, 149-174, 2017.

Skip-stop planning strategies¹

- An additional change to the ideal timetables: it is possible to skip a stop (= not schedule a stop)
- The case study is the high-speed double-track line Beijing-Shanghai in China
- The goal is to increase the capacity utilization of the corridor

¹F. Jiang, V. Cacchiani, P. Toth. Train Timetabling by Skip-Stop Planning in Highly Congested Lines. Transportation Research Part B, 104, 149-174, 2017.

Skip-stop planning strategies¹

- An additional change to the ideal timetables: it is possible to skip a stop (= not schedule a stop)
- The case study is the high-speed double-track line Beijing-Shanghai in China
- The goal is to increase the capacity utilization of the corridor
- Two sets of trains:
 - existing trains \rightarrow actual feasible schedule
 - additional trains \rightarrow ideal timetables

¹F. Jiang, V. Cacchiani, P. Toth. Train Timetabling by Skip-Stop Planning in Highly Congested Lines. Transportation Research Part B, 104, 149-174, 2017.

Skip-stop planning strategies¹

- An additional change to the ideal timetables: it is possible to skip a stop (= not schedule a stop)
- The case study is the high-speed double-track line Beijing-Shanghai in China
- The goal is to increase the capacity utilization of the corridor
- Two sets of trains:
 - existing trains \rightarrow actual feasible schedule
 - additional trains \rightarrow ideal timetables
- Acceleration and deceleration times must be taken into account
- maximum number of stops that can be cancelled per train
- no shift for the existing trains

¹F. Jiang, V. Cacchiani, P. Toth. Train Timetabling by Skip-Stop Planning in Highly Congested Lines. Transportation Research Part B, 104, 149-174, 2017.

Solution method

- ILP arc-model with additional constraints
- Lagrangian-based heuristic algorithm
- Skip-stop strategies (with acceleration and deceleration) are handled by the Dynamic Programming algorithm

Dynamic Programming algorithm

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Generalization to include additional real-life features

Computational experiments - case study

- Beijing-Shanghai corridor: 29 stations
- 304 existing trains and 42 additional trains

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Generalization to include additional real-life features

Computational experiments - case study

- Beijing-Shanghai corridor: 29 stations
- 304 existing trains and 42 additional trains

- the maximum number of stops that can be cancelled per train is set to 1
- the maximum stretch is set according to the origin-destination of the train

-

• the maximum shift is set to ± 10 , ± 20 or ± 30 minutes

Generalization to include additional real-life features

Computational experiments adding new trains

#trains	shift	#sched	travel	stretch	profit	gap%	time (s)
346 sh ± 10	109	328(0)	45829	1132(737)	986571	3.72	3857
346 sh \pm 20	294	333(0)	45827	1142(740)	996286	2.98	6153
346 sh \pm 30	415	336(1)	45681	1161(689)	998975	2.95	9732

Table: No stop skipping

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Computational experiments adding new trains

#trains	shift	#sched	travel	stretch	profit	gap%	time (s)
346 sh±10	109	328(0)	45829	1132(737)	986571	3.72	3857
346 sh \pm 20	294	333(0)	45827	1142(740)	996286	2.98	6153
346 sh \pm 30	415	336(1)	45681	1161(689)	998975	2.95	9732

Table: No stop skipping

#trains	shift	#sched	travel	stretch	profit	gap%	#sk	time (s)
346 sh±10	115	329(0)	45756	1096(662)	988525	3.66	2	4969
346 sh \pm 20	279	334(0)	45731	1113(648)	997991	2.86	3	7510
346 sh \pm 30	415	337(0)	45752	1192(664)	1003265	2.55	2	11112

Table: With stop skipping

Generalization to include additional real-life features

Passenger-centric objectives

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Generalization to include additional real-life features

Passenger-centric objectives²

 \blacksquare Line Planning Problem \rightarrow frequency of trains for each line in the network

²G.J. Polinder, V. Cacchiani, M.E. Schmidt, D. Huisman. An iterative heuristic for passenger-centric train timetabling with integrated adaption times. Computers & Operations Research, 142, 105740, 2022.
Passenger-centric objectives²

- \blacksquare Line Planning Problem \rightarrow frequency of trains for each line in the network
- Regularity (synchronization) constraints between trains of the same line → to provide a regular service to passengers

²G.J. Polinder, V. Cacchiani, M.E. Schmidt, D. Huisman. An iterative heuristic for passenger-centric train timetabling with integrated adaption times. Computers & Operations Research, 142, 105740, 2022.

Passenger-centric objectives²

- \blacksquare Line Planning Problem \rightarrow frequency of trains for each line in the network
- Regularity (synchronization) constraints between trains of the same line → to provide a regular service to passengers
- Passengers transfer between trains of different lines to reach their destination

²G.J. Polinder, V. Cacchiani, M.E. Schmidt, D. Huisman. An iterative heuristic for passenger-centric train timetabling with integrated adaption times. Computers & Operations Research, 142, 105740, 2022.

Passenger-centric objectives²

- \blacksquare Line Planning Problem \rightarrow frequency of trains for each line in the network
- Regularity (synchronization) constraints between trains of the same line → to provide a regular service to passengers
- Passengers transfer between trains of different lines to reach their destination
- Therefore, trains of different lines have to be synchronized effectively

²G.J. Polinder, V. Cacchiani, M.E. Schmidt, D. Huisman. An iterative heuristic for passenger-centric train timetabling with integrated adaption times. Computers & Operations Research, 142, 105740, 2022.

Generalization to include additional real-life features

Passenger-centric objectives

■ Synchronize trains and achieve regularity → minimize the total perceived passenger travel time:

Passenger-centric objectives

■ Synchronize trains and achieve regularity → minimize the total perceived passenger travel time: in-train time + transfer time + transfer penalty + adaption time (waiting time at the origin station)

Passenger-centric objectives

■ Synchronize trains and achieve regularity → minimize the total perceived passenger travel time: in-train time + transfer time + transfer penalty + adaption time (waiting time at the origin station)

Passenger-centric timetabling

We consider a time period H of one hour (periodic timetabling)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Passenger-centric timetabling

- We consider a time period *H* of one hour (periodic timetabling)
- Given passengers origin-destination (OD) pairs, we precompute a set of routes for each OD pair k (direct travel options and routes with up to a maximum number of

transfer options)

Passenger-centric timetabling

- We consider a time period *H* of one hour (periodic timetabling)
- Given passengers origin-destination (OD) pairs, we precompute a set of routes for each OD pair k (direct travel options and routes with up to a maximum number of transfer options)

- *d_k*: number of passengers of OD pair *k*
- π : timetabling variables (time of departure and arrival events)

Passenger-centric timetabling

- We consider a time period *H* of one hour (periodic timetabling)
- Given passengers origin-destination (OD) pairs, we precompute a set of routes for each OD pair k (direct travel options and routes with up to a maximum number of transfer options)
- *d_k*: number of passengers of OD pair *k*
- π : timetabling variables (time of departure and arrival events)

$$\mathsf{Min}_{\pi} \sum_{k \in \mathcal{OD}} d_k \cdot R_k(\pi)$$

Such that π is a feasible timetable

passengers take best routes with respect to π

 $R_k(\pi)$ avg. perceived travel time of one passenger of OD-pair $k \quad \forall k \in \mathcal{OD}$

Generalization to include additional real-life features

Average perceived travel time

$$R_k(\pi) = \frac{1}{d_k} \sum_{\nu \in V^k} d_k \cdot \frac{L^k_\nu}{H} \cdot (\gamma_w \cdot W^k_\nu + Y^k_\nu) = \frac{1}{H} \sum_{\nu \in V^k} L^k_\nu \cdot (\gamma_w \cdot W^k_\nu + Y^k_\nu)$$

- W^k_v: adaption time for a route departing in event v towards the destination of OD-pair k
- γ_{w} : weight of the adaption time
- Y_v^k : in-train time + transfer time on the best route from event v towards the destination of OD-pair k (includes penalties for transfers)
- V^k: set of departure events of these routes for OD pair k (from the origin of k)

Generalization to include additional real-life features

Average perceived travel time

$$R_k(\pi) = \frac{1}{d_k} \sum_{v \in V^k} d_k \cdot \frac{L^k_v}{H} \cdot (\gamma_w \cdot W^k_v + Y^k_v) = \frac{1}{H} \sum_{v \in V^k} L^k_v \cdot (\gamma_w \cdot W^k_v + Y^k_v)$$

- W^k_v: adaption time for a route departing in event v towards the destination of OD-pair k
- γ_{w} : weight of the adaption time
- Y_v^k : in-train time + transfer time on the best route from event v towards the destination of OD-pair k (includes penalties for transfers)
- V^k: set of departure events of these routes for OD pair k (from the origin of k)
- Uniformly distributed passenger arrivals in the hour
- L_v^k: time interval between event v and the previous departure event of a route for OD-pair k

Generalization to include additional real-life features

Average perceived travel time

$$R_k(\pi) = \frac{1}{d_k} \sum_{\nu \in V^k} d_k \cdot \frac{L^k_\nu}{H} \cdot (\gamma_w \cdot W^k_\nu + Y^k_\nu) = \frac{1}{H} \sum_{\nu \in V^k} L^k_\nu \cdot (\gamma_w \cdot W^k_\nu + Y^k_\nu)$$

- *W*^k_v: adaption time for a route departing in event v towards the destination of OD-pair k
- γ_w : weight of the adaption time
- Y_v^k : in-train time + transfer time on the best route from event v towards the destination of OD-pair k (includes penalties for transfers)
- V^k: set of departure events of these routes for OD pair k (from the origin of k)
- Uniformly distributed passenger arrivals in the hour
- L^k_v: time interval between event v and the previous departure event of a route for OD-pair k
- The total number of passengers of OD-pair k arriving in each interval L_v^k is $d_k \cdot \frac{L_v^k}{H}$

Solution method

• The problem can be modelled as a Periodic Event Scheduling Problem (PESP) (Serafini Ukovich 1989) with additional constraints to compute the $R_k(\pi)$

Solution method

- The problem can be modelled as a Periodic Event Scheduling Problem (PESP) (Serafini Ukovich 1989) with additional constraints to compute the $R_k(\pi)$
- The PESP model can be solved by a MIP-based heuristic but requires very long computing times for real-life instances

Solution method

- The problem can be modelled as a Periodic Event Scheduling Problem (PESP) (Serafini Ukovich 1989) with additional constraints to compute the $R_k(\pi)$
- The PESP model can be solved by a MIP-based heuristic but requires very long computing times for real-life instances
- Another approach: PESP without infrastructure constraints + algorithm based on a time-expanded formulation

Solution method

- The problem can be modelled as a Periodic Event Scheduling Problem (PESP) (Serafini Ukovich 1989) with additional constraints to compute the $R_k(\pi)$
- The PESP model can be solved by a MIP-based heuristic but requires very long computing times for real-life instances
- Another approach: PESP without infrastructure constraints + algorithm based on a time-expanded formulation
 - Remove from the PESP model all constraints on timetable feasibility → allow conflicts between trains

Solution method

- The problem can be modelled as a Periodic Event Scheduling Problem (PESP) (Serafini Ukovich 1989) with additional constraints to compute the $R_k(\pi)$
- The PESP model can be solved by a MIP-based heuristic but requires very long computing times for real-life instances
- Another approach: PESP without infrastructure constraints + algorithm based on a time-expanded formulation
 - Remove from the PESP model all constraints on timetable feasibility → allow conflicts between trains

Compute passenger-ideal timetables

Solution method

- The problem can be modelled as a Periodic Event Scheduling Problem (PESP) (Serafini Ukovich 1989) with additional constraints to compute the $R_k(\pi)$
- The PESP model can be solved by a MIP-based heuristic but requires very long computing times for real-life instances
- Another approach: PESP without infrastructure constraints + algorithm based on a time-expanded formulation
 - Remove from the PESP model all constraints on timetable feasibility → allow conflicts between trains
 - Compute passenger-ideal timetables
 - Make the timetables feasible (no conflicts between trains) by modifying the ideal ones as little as possible

Solution method

- The problem can be modelled as a Periodic Event Scheduling Problem (PESP) (Serafini Ukovich 1989) with additional constraints to compute the $R_k(\pi)$
- The PESP model can be solved by a MIP-based heuristic but requires very long computing times for real-life instances
- Another approach: PESP without infrastructure constraints + algorithm based on a time-expanded formulation
 - Remove from the PESP model all constraints on timetable feasibility → allow conflicts between trains
 - Compute passenger-ideal timetables
 - Make the timetables feasible (no conflicts between trains) by modifying the ideal ones as little as possible → Lagrangian Heuristic (LH)

Solution method

- The problem can be modelled as a Periodic Event Scheduling Problem (PESP) (Serafini Ukovich 1989) with additional constraints to compute the $R_k(\pi)$
- The PESP model can be solved by a MIP-based heuristic but requires very long computing times for real-life instances
- Another approach: PESP without infrastructure constraints + algorithm based on a time-expanded formulation
 - Remove from the PESP model all constraints on timetable feasibility → allow conflicts between trains
 - Compute passenger-ideal timetables
 - Make the timetables feasible (no conflicts between trains) by modifying the ideal ones as little as possible → Lagrangian Heuristic (LH)
 - Evaluate the impact on passenger perceived travel time → feedback mechanism

Generalization to include additional real-life features

Feedback mechanism

After the timetable has been made feasible, some OD-pairs may have a bad perceived travel time

Generalization to include additional real-life features

Feedback mechanism

After the timetable has been made feasible, some OD-pairs may have a bad perceived travel time

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We identify the OD-pairs that got the largest worsening

Feedback mechanism

- After the timetable has been made feasible, some OD-pairs may have a bad perceived travel time
- We identify the OD-pairs that got the largest worsening
- We modify the profit structure by penalizing more the shift at origin and intermediate stations where the service was not regular

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Feedback mechanism

- After the timetable has been made feasible, some OD-pairs may have a bad perceived travel time
- We identify the OD-pairs that got the largest worsening
- We modify the profit structure by penalizing more the shift at origin and intermediate stations where the service was not regular

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Apply again the Lagrangian Heuristic

Generalization to include additional real-life features

Computational experiments - case study

Three case studies of the Dutch railway network (lines of 2019) and one hour period:

- A2: 34 stations, 20 trains, 891 OD-pairs.
- Rotterdam-Groningen: 77 stations, 60 trains, 3810 OD-pairs.
- Extended A2: 140 stations, 88 trains, 11121 OD-pairs.

Generalization to include additional real-life features

A2 instance: ideal vs feasible timetable

Generalization to include additional real-life features

A2 instance: before and after feedback

Generalization to include additional real-life features

A2 instance: before and after feedback

イロト 不得 とうほう 不良 とう

Comparison

Instance	Approach	Evaluation value	Time (hours)
	Ideal + LH	100.18	2 + 0.03

A2

Comparison

Instance	Approach	Evaluation value	Time (hours)
	Ideal + LH	100.18	2+0.03
	Ideal + LH + FB	100.10	2 + 0.11

(ロ)、

A2

Comparison

Instance	Approach	Evaluation value	Time (hours)
	Ideal + LH	100.18	2 + 0.03
	IdeaI + LH + FB	100.10	2 + 0.11
A2	Full PESP		
	- After 2.11 hours	105.80	2.11

Comparison

Instance	Approach	Evaluation value	Time (hours)
A2	Ideal + LH	100.18	2 + 0.03
	Ideal + LH + FB	100.10	2 + 0.11
	Full PESP		
	- After 2.11 hours	105.80	2.11
	- After 8 hours	104.88	8

Comparison

Instance	Approach	Evaluation value	Time (hours)
A2	Ideal + LH	100.18	2+0.03
	Ideal + LH + FB	100.10	2 + 0.11
	Full PESP		
	- After 2.11 hours	105.80	2.11
	- After 8 hours	104.88	8
	Lower bound CPLEX	97.09	

Comparison

Instance	Approach	Evaluation value	Time (hours)
	Ideal + LH	100.18	2 + 0.03
	IdeaI + LH + FB	100.10	2 + 0.11
4.2	Full PESP		
AZ	- After 2.11 hours	105.80	2.11
	- After 8 hours	104.88	8
	Lower bound CPLEX	97.09	
	Ideal + LH	100.59	4 + 0.06
Rotterdam Groningen	IdeaI + LH + FB	100.55	4 + 0.18
	Full PESP		
	- After 4.18 hours	105.64	4.18
	- After 16 hours	103.69	16
	Lower bound CPLEX	92.72	
			-

Comparison

Instance	Approach	Evaluation value	Time (hours)
	Ideal + LH	100.18	2+0.03
	Ideal + LH + FB	100.10	2 + 0.11
	Full PESP		
AZ	- After 2.11 hours	105.80	2.11
	- After 8 hours	104.88	8
	Lower bound CPLEX	97.09	
	Ideal + LH	100.59	4+0.06
	Ideal + LH + FB	100.55	4 + 0.18
Battandana Cuaningan	Full PESP		
Rotterdam Gröningen	- After 4.18 hours	105.64	4.18
	- After 16 hours	103.69	16
	Lower bound CPLEX	92.72	
Extended A2	Ideal + LH	101.51	4+0.14
	Ideal + LH + FB	101.28	4 + 0.49
	Full PESP		
	- After 4.49 hours	-	4.49
	- After 16 hours	-	16
	Lower bound CPLEX	93.00	
Algorithms based on time-expanded formulations for Train Timetabling Problems

Generalization to include additional real-life features

Time-expanded formulations can be effectively used in heuristic algorithms for real-life case studies

Efficient timetables can be computed in planning

Algorithms based on time-expanded formulations for Train Timetabling Problems

Generalization to include additional real-life features

Conclusion

Time-expanded formulations can be effectively used in heuristic algorithms for real-life case studies

- Efficient timetables can be computed in planning
- Delays and disruptions can still occur in real-time

Generalization to include additional real-life features

Conclusion

- Time-expanded formulations can be effectively used in heuristic algorithms for real-life case studies
- Efficient timetables can be computed in planning
- Delays and disruptions can still occur in real-time
- $\blacksquare \rightarrow$ Andrea D'Ariano will talk about efficient methods for train rescheduling during rail operations

Algorithms based on time-expanded formulations for Train Timetabling Problems

Generalization to include additional real-life features

Thank you for your attention