Solving robust bin packing problems with a branch-and-price approach

Xavier Schepler ${ }^{\text {a }}$, André Rossi ${ }^{\text {b }}$, Evgeny Gurevsky ${ }^{\text {c }}$, Alexandre Dolgui ${ }^{\text {d }}$
a Data Lab, Generix Group,
${ }^{\text {b }}$ Université Paris Dauphine - PSL, LAMSADE UMR CNRS 7243
${ }^{\text {c }}$ Université de Nantes, LS2N UMR CNRS 6004
${ }^{\text {d }}$ IMT Atlantique, LS2N UMR CNRS 6004

February 2nd, 2024

Context and objectives

Context: standard 1D Bin Packing ($B P$) under uncertainty

BP
A set V of items of different sizes $\left(w_{i}>0\right)$ have to be assigned to a minimum number of identical bins of capacity $W \geq \max _{i \in V} w_{i}$

Model of uncertainty
A given subset $\widetilde{V} \subseteq V$ of item sizes have random deviations from their nominal values.

Application examples

- Hospital administration (Cardoen et al., 2010; Lamiri et al., 2008).
- Logistics capacity planning (Crainic et al., 2016).
- Assembly balancing (Boysen et al., 2007; Battaïa and Dolgui, 2013).

Considered robust $B P$ variants

Stability radius calculated for the ℓ_{∞} norm: $R B P_{\infty}(r)$
Each uncertain size can be increased by a maximum of r.
Relative resiliency: $R B P_{r r}(\alpha)$
Each uncertain size w_{i} can be increased by a maximum of αw_{i}
Stability radius calculated for the ℓ_{1} norm: $R B P_{1}(r)$
The sum of the size increases over \widetilde{V} is at most r.

Objectives of the study

- Solve to optimality these robust variants of $B P$.
- Investigate what protection against uncertainty is offered.
- Evaluate the cost of robustness.

Presentation plan

Context and objectives

Literature review

A Branch-and-Price algorithm

Numerical results

Conclusion and perspectives

Literature review

Column generation for $B P$ under uncertainty

Robust machine availability problem (Song et al., 2018)

- Budgeted uncertainty (Bertsimas and Sim, 2004).
- Set-cover reformulation, Branch-and-Price algorithm (B\&P)
- Master problem: selection of filled bin patterns (set cover problem).
- Pricing sub-problem : generation of filled bin patterns (knapsack-like problem).
- Can handle instances with up to 180 items with limited uncertainty within 1200 seconds.

Cutting stock with random demand (Alem et al., 2010)

- Two stage stochastic non-linear program.
- Column generation based heuristics.

Selected previous B\&P algorithms

Focus on Ryan and Foster branching

Branch on a fractionally packed pair of items, so that they are:

1. in the same bin \rightarrow standard Knapsack (KS) sub-problem,
2. in two different bins $\rightarrow K S$ with conflicts sub-problem.

Previous studies with this branching scheme

Study	Uncertainty	Node selection	KS with conflicts
Vance et al. (1994)	No	No conflicts first	MILP solver
Gamrath et al.	No	Integer feasibility,	MILP solver
(2016)	objective function	Binary decision	
Song et al. (2018)	Budgeted	$?$	diagrams

A Branch-and-Price algorithm

Compact formulations

Stability radius calculated for the ℓ_{∞} norm: $R B P_{\infty}(r)$

$$
\begin{equation*}
\min \sum_{k \in K} y_{k} \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
\text { s.t. } \quad \sum_{k \in K} x_{i k} \geq 1, \quad \forall i \in V, \tag{1b}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i \in \tilde{V}}\left(w_{i}+r\right) x_{i k}+\sum_{i \in V \backslash \tilde{V}} w_{i} x_{i k} \leq W_{y_{k}}, \quad \forall k \in K, \tag{1c}
\end{equation*}
$$

$$
\begin{equation*}
y_{k} \in\{0,1\}, \quad \forall k \in K, \tag{1d}
\end{equation*}
$$

$$
\begin{equation*}
x_{i k} \in\{0,1\}, \quad \forall i \in V, \quad \forall k \in K . \tag{1e}
\end{equation*}
$$

Relative resiliency: $R B P_{r r}(r)$
Constraints (1c) are replaced by:

$$
\sum_{i \in \tilde{V}} w_{i}(1+\alpha) x_{i k}+\sum_{i \in V \backslash \tilde{v}} w_{i} x_{i k} \leq W y_{k}, \quad \forall k \in K
$$

Observation
Solving $R B P_{\infty}(r)$ or $R B P_{r r}(r)$ reduces to solving $B P$.

Compact formulations

Stability radius calculated for the ℓ_{1} norm: $R B P_{1}(r)$

$$
\begin{array}{ll}
\min & \sum_{k \in K} y_{k} \\
\text { s.t. } & \sum_{k \in K} x_{i k} \geq 1, \quad \forall i \in V, \\
& x_{i k} \leq a_{k}, \quad \forall i \in \widetilde{V}, \quad \forall k \in K, \\
& \sum_{i \in V} w_{i} x_{i k}+r a_{k} \leq W y_{k}, \quad \forall k \in K, \\
& y_{k} \in\{0,1\}, \quad \forall k \in K, \\
& a_{k} \in\{0,1\}, \quad \forall k \in K, \\
& x_{i k} \in\{0,1\}, \quad \forall i \in V, \quad \forall k \in K . \tag{2g}
\end{array}
$$

Observation

- $R B P_{1}(r)$ is a generalization of $B P$.
- An algorithm for $R B P_{1}(r)$ can also solve $B P, R B P_{\infty}(r)$ and $R B P_{r r}(\alpha)$

Set-cover reformulation

Master problem: selection of filled bin patterns

$$
\begin{array}{ll}
\min & \sum_{B \in \mathcal{B}} \lambda_{B} \\
\text { s.t. } & \sum_{B \in \mathcal{B}} x_{i}^{B} \lambda_{B} \geq 1, \quad \forall i \in V, \\
& \sum_{B \in \mathcal{B}} \lambda_{B} \leq K \\
& \lambda_{B} \in\{0,1\}, \quad \forall B \in \mathcal{B} . \tag{3d}
\end{array}
$$

Pricing sub-problem: generation of filled bin patterns

$$
\begin{array}{ll}
\max & \sum_{i \in V} \pi_{i} x_{i} \\
\text { s.t. } & x_{i} \leq a, \quad \forall i \in \widetilde{V}, \\
& \sum_{i \in V} w_{i} x_{i}+r a \leq W, \\
& x_{i} \in\{0,1\}, \quad \forall i \in V, \\
& a \in\{0,1\} . \tag{4e}
\end{array}
$$

Sub-problems without conflict

Property

The pricing sub-problem without conflict can be solved in $\mathcal{O}(n \cdot W)$, by solving two instances of the 0-1 knapsack problem.
\rightarrow Two calls to the Combo algorithm (Martello et al., 1999):

- one for the case without uncertain-sized item (i.e. $a=0$)
- one for the case with uncertain-sized items (i.e. $a=1$)

Sub-problems with conflicts

Property

The pricing sub-problem with conflicts can be solved by addressing two instances of the 0-1 knapsack problem with conflicts.
\rightarrow Two calls to a dedicated branch-and-bound algorithm (Sadykov and Vanderbeck, 2013).

Property (Dominance rule)

Let $C_{i} \subset V$ be the set of conflicting items with $i \in V$, i.e., for each $j \in C_{i}$ we have $x_{i}+x_{j} \leq 1$. If the following four conditions hold for some $j \in C_{i}$, then item j is "dominated" by item i, and can be removed from the instance of the robust 0-1 knapsack problem with conflicts:

$$
\begin{aligned}
& \text { 1. } i \notin \widetilde{V} \text { or } j \in \widetilde{V} \\
& \text { 2. } \pi_{i} \geq \pi_{j} \text {, } \\
& \text { 3. } w_{i} \leq w_{j} \text {, } \\
& \text { 4. } C_{i} \backslash\{j\} \subseteq C_{j} \backslash\{i\} .
\end{aligned}
$$

Primal heuristics

Adapted First-Fit Decreasing heuristic (FFD)

1. First pack uncertain-sized items with FFD:

Bins capacity is $W-r$
2. Then pack remaining items with FFD:

All extra bins have capacity W
Integer programming based heuristics

- Simple rounding,
- One-opt,
- ZI Round.

Numerical results

Settings

- The branch-and-price algorithm is implemented in C.
- SCIP Optimization Suite 7.0.2 framework.
- IBM CPLEX 12.8 simplex.
- Experiments were run on an Intel Core $17-6700 \mathrm{HQ}$ processor at 2.6 GHz with 4 GB of RAM
- Depth first search was in use, restarted from the best-bound node every 100 nodes.

Performance with BP

Set	\#INSTANCE	\#OPT	\#OPT Vance	\#OPT SCIP	\#OPT Belov	\#OPT Song
Falkenauer U	74	60	53	18	74^{*}	-
Falkenauer T	80	79^{*}	76	35	57	52
Scholl 1	323	323^{*}	323^{*}	244	323^{*}	-
Scholl 2	244	197	204	67	244^{*}	-
Scholl 3	10	10^{*}	10^{*}	0	10^{*}	0
Wascher	17	15	6	0	17^{*}	6
Schwerin 1	100	100^{*}	100^{*}	0	100^{*}	100^{*}
Schwerin 2	100	99	100^{*}	0	100^{*}	100^{*}
Hard 28	28	26	11	7	28^{*}	11
Random 50	165	165^{*}	165^{*}	165^{*}	165^{*}	-
Random 100	271	271^{*}	271^{*}	271^{*}	271^{*}	-
Random 200	359	359^{*}	358	293	359^{*}	-
Random 300	393	393^{*}	387	155	393^{*}	-
Random 400	425	425^{*}	416	114	425^{*}	-
Random 500	414	412	394	69	414^{*}	-
Random 750	433	407	99	22	433^{*}	-
Random 1000	441	282	62	0	441^{*}	-
Total	3877	3623	3035	1460	3854^{*}	-

Table 1: Comparative results with BP: number of instances solved in at most one minute per instance

Performance with $R B P_{1}(r)$

$\widetilde{V},(\%)$	r	Min. CPU, (s.)	Avg. CPU, (s.)	Max. CPU, (s.)	Std. CPU, (s.)	Avg. \#BIN	\#OPT, (\%)	$\begin{gathered} \text { \#SOL, (\%) } \\ \text { with GAP = } 1 \end{gathered}$
10\%	All	0.09	52.28	616.78	161.45	39.69	92.3\%	7.7\%
	0.2W (290)	0.11	38.46	605.82	137.26	38.52	94.83\%	5.17\%
	0.3W (290)	0.1	40.26	616.78	141.86	39.44	94.14\%	5.86\%
	0.4W (290)	0.09	78.1	603.47	195.99	41.1	87.93\%	12.07\%
30\%	All	0.03	55.19	601.78	168.88	44.2	91.26\%	8.74\%
	0.2W (290)	0.06	63.11	601.78	179.58	40.64	90\%	10\%
	0.3W (290)	0.08	38.08	600.21	140.7	43.71	94.14\%	5.86\%
	0.4 W (290)	0.03	64.37	600.21	182.4	48.26	89.66\%	10.34\%
50\%	All	0.02	64.59	600.88	182.2	48.63	89.66\%	10.34\%
	0.2W (290)	0.05	65.43	600.02	182.21	42.68	89.66\%	10.34\%
	0.3 W (290)	0.02	62.53	600.88	179.7	47.76	90\%	10\%
	0.4 W (290)	0.02	65.8	600.01	185.27	55.44	89.31\%	10.69\%
All	All	0.02	57.35	616.78	171.07	44.17	91.07\%	8.93\%

Table 2: Results of the proposed branch-and-price algorithm with $R B P_{1}(r), 870$ runs

Cost of robustness

Figure 1: Increase of the extra cost for robustness, varying the percentage of uncertain-size items and r, for $R B P_{1}(r)$ and $R B P_{\infty}(r)$

Cost of robustness

α	$\widetilde{V},(\%)$	Extra bins, (\%)
0.2	10%	1.97%
	30%	5.80%
	50%	9.69%
0.3	10%	2.48%
	30%	8.56%
	50%	14.34%
0.4	10%	3.68%
	30%	11.54%
	50%	19.47%

Table 3: Extra cost for robustness increasing relative resiliency, for $R P B_{r r}(\alpha)$

Conclusion and perspectives

Conclusion

- Three robust variants of $B P$ with items of uncertain size.
- One set-cover reformulation valid for the three robust variants.
- The proposed branch-and-price algorithm is able:
- to obtain an optimal solution to every instance of $R B P_{\infty}(r)$ and $R B P_{r r}(\alpha)$, on average in less than three seconds per instance,
- to obtain a proven optimal solution to 91% of $R B P_{1}(r)$ instances and to obtain a solution either optimal or requiring one extra bin to the remaining ones, on average in less than one minute.
- The extra cost for robustness ranged from 2% to 146% extra bins, depending on the robust approach, the percentage of uncertain items, and the value of r or α.
- We observed that standard $B P$ provides solutions with a feasibility probability always close to 0 , and that the proposed approaches provide the expected protections against uncertainty.

Perspectives

- Different robustness models:
- For example uncertain bins, in which all item sizes can deviate.
- Different kinds of uncertainties, affecting different subsets of items.
- Improvement of the branch-and-price algorithm:
- Acceleration of the lower bound evaluation
- Improvement of this lower bound.
- Design of primal heuristics.

