
Online Bin Packing with Predictions

Spyros Angelopoulos

JFRO, Paris, February 2, 2024

Work with Shahin Kamali (York) and Kimia Shadkami (Manitoba)



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
bins of a given capacity

Objective: Minimize the (asymptotic) competitive ratio



Bin packing

Setting:  Pack a sequence of items (each with its own weight) into the minimum number of 
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Many applications (e.g., cloud computing)

Objective: Minimize the (asymptotic) competitive ratio
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Online algorithms with predictions

Access to a  prediction associated with the input which is inherently erroneous
The prediction has error �   (unknown to the algorithm)η

Robustness : competitive ratio
                        with adversarial error

Consistency : competitive ratio
                        with no error

competitive ratio 
with  error �   η

Predictions that are “learnable’’ (e.g., sampling of the input)

Theoretical and experimental results

Algorithms that degrade “gently” with error

[Lykouris and Vassilvitskii 2018]
[Purohit et al. 2018]
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Side note: advice complexity of bin packing

Competitive ratio of algorithms with access to bits of “additional information”

   Trusted advice :    [Boyar, Kamali, Larsen and López-Ortiz 2016]

[Mikkelsen 2016]

[A., Dürr, Kamali, Renault and Rosén 2018 ]

Trade-offs between advice size and competitive ratio, for error-free advice

   Untrusted advice: 

Consistency-robustness tradeoffs for advice of a given size

[A., Dürr, Jin, Kamali, and Renault 2020] 
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Prediction: Frequencies at which the items are requested in the sequence

Formally: for each size � , the frequency  �  of �  in the sequence �  

is the number of items of size �  in �  divided by the size of �

x ∈ [1,k] fx,σ x σ

x σ σ

Prediction error � :  �  distance between the actual and the predicted frequenciesη L1

Frequency predictions are PAC-learnable
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Theorem:   Profile Packing has consistency � ,  and competitive ratio at most

                    �

1 + ϵ
1 + (2 + 5ϵ)ηk + ϵ

(excellent consistency, bad robustness)

Lower bound:   Let �  be a constant. For any � , any algorithm that is 

                          � -consistent must have robustness at least �  

c < 1 α ≤ c/k
(1 + α) (1 − c)k /2
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Robustification

Algorithm : 

We define an algorithm  HYBRID( � , where �   is a  parameter chosen by the userλ) λ ∈ [0,1]

Main idea: Some items are served using a competitive

algorithm (A), and others using Profile Packing 

Profile Packing
A

λ

— Keep track of the number of items served by PP, and the total number of items

— Upon arrival of an item of size �  x

Specifically: counters  �   and �   for all �ppcount(x) count(x) x ∈ [1,k]

• If there is an available placeholder, use it, and declare it a PP-item  

• Otherwise, if � , serve it using PP ppcount(x) ≤ λ ⋅ count(x)
Else serve it using A
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Robustification (results)

Theorem:  HYBRID( �  has competitive ratio at most 

                   � , where � comp. ratio of A

λ)
(1 + ϵ)((1 + (2 + 5ϵ)ηk)λ + cA(1 − λ)) cA =

Better results can be achieved assuming knowing some upper bound on the error

Note:  Some approaches that do not work:

          — Algorithms along the lines of [Mahdian, Nazerzadeh and Saberi 2012]

          — Skip the first step of the algorithm



Extensions

  Improvements when few items can be packed in a bin (VM placement)

  Handling fractional items

  Sampling-based randomized online algorithms
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Handling fractional items

If a fractional item appears, serve it separately using First Fit

We need a measure of the “integrality" of a sequence, e.g., �d(σ) = ∑
x∈σ

|x − ⌊x⌉ |

This measure is too restrictive: no online algorithm with frequency predictions 

can have competitive ratio better than 4/3, even if � , and �η = 0 d(σ) = ϵ

Alternative:   �       (ratio of “fractional” sizes over total sizes) ̂d(σ) =
∑x∈σ,x≠⌊x⌉ x

∑x∈σ x

Result: If an algorithm with frequency predictions has competitive ratio �  for integral sizes, 

then we can transform it to an algorithm of competitive ratio �  for fractional sizes

c

c + 2 ̂d(σ)



Experimental analysis

Error (η)
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Future work

   Further improve the lower bounds

   Multi-dimensional bin packing 

   Extend to full (i.e., “continuous”) model (caveat: advice complexity impossibility results)

Thank you!

   Evolving distributions

Full paper available at www.jair.org

http://www.jair.org


A sampling-based online algorithm

We can use the PAC-learnability of frequency predictions to obtain a randomized

algorithm that mixes a robust algorithm A and Profile Packing

Result:  For any � , there is a randomized algorithm with �  samples that has expected

competitive ratio  � , where �

ϵ > 0 s

(1 − δ)(1 + ϵ)((1 + (2 + 5ϵ)ηk + ϵ) + cAδ δ = 1/ 2sη2−k


