Online Bin Packing with Predictions

Spyros Angelopoulos

Work with Shahin Kamali (York) and Kimia Shadkami (Manitoba)

JFRO, Paris, February 2, 2024

Setting: Pack a sequence of items (each with its own weight) into the minimum number of bins of a given capacity

Objective: Minimize the (asymptotic) competitive ratio

Setting: Pack a sequence of items (each with its own weight) into the minimum number of bins of a given capacity

Objective: Minimize the (asymptotic) competitive ratio

Many applications (e.g., cloud computing)

Best known upper bound : 1.57829 [Balogh, Békési, Dósa, Epstein, Levin 2018]

Best known lower bound : 1.54278 [Balogh, Békési, Dósa, Epstein, Levin 2021]

FIRST-FIT, BEST-FIT have competitive ratio 1.7 [Johnson et al. 1974]

Best known upper bound : 1.57829 [Balogh, Békési, Dósa, Epstein, Levin 2018]

Best known lower bound : 1.54278 [Balogh, Békési, Dósa, Epstein, Levin 2021]

FIRST-FIT, BEST-FIT have competitive ratio 1.7 [Johnson et al. 1974]

In practice, FIRST-FIT and BEST-FIT perform very well [Kamali and López-Ortiz 2015]

In practice, many competitively efficient algorithms do not perform as well as FIRST-FIT

Best known upper bound : 1.57829 [Balogh, Békési, Dósa, Epstein, Levin 2018]

Best known lower bound : 1.54278 [Balogh, Békési, Dósa, Epstein, Levin 2021]

FIRST-FIT, BEST-FIT have competitive ratio 1.7 [Johnson et al. 1974]

In practice, FIRST-FIT and BEST-FIT perform very well [Kamali and López-Ortiz 2015]

In practice, many competitively efficient algorithms do not perform as well as FIRST-FIT

Enhance the standard model of so as to leverage some additional information about the input

[Lykouris and Vassilvitskii 2018]

[Purohit et al. 2018]

[Lykouris and Vassilvitskii 2018]

[Purohit et al. 2018]

Access to a **prediction** associated with the input which is inherently **erroneous** The prediction has error η (unknown to the algorithm)

[Lykouris and Vassilvitskii 2018]

[Purohit et al. 2018]

Access to a **prediction** associated with the input which is inherently **erroneous** The prediction has error η (unknown to the algorithm)

[Lykouris and Vassilvitskii 2018]

[Purohit et al. 2018]

Access to a **prediction** associated with the input which is inherently **erroneous**

The prediction has error η (unknown to the algorithm)

Consistency : competitive ratio with *no* error

[Lykouris and Vassilvitskii 2018]

[Purohit et al. 2018]

Access to a **prediction** associated with the input which is inherently **erroneous**

The prediction has error η (unknown to the algorithm)

[Lykouris and Vassilvitskii 2018]

[Purohit et al. 2018]

Access to a **prediction** associated with the input which is inherently **erroneous** The prediction has error η (unknown to the algorithm)

Predictions that are "learnable" (e.g., sampling of the input) Algorithms that degrade "gently" with error Theoretical and experimental results

Side note: advice complexity of bin packing

Competitive ratio of algorithms with access to bits of "additional information"

Side note: advice complexity of bin packing

Competitive ratio of algorithms with access to bits of "additional information"

Trusted advice : [Boyar, Kamali, Larsen and López-Ortiz 2016]
[Mikkelsen 2016]

[A., Dürr, Kamali, Renault and Rosén 2018]

Trade-offs between advice size and competitive ratio, for error-free advice

Side note: advice complexity of bin packing

Competitive ratio of algorithms with access to bits of "additional information"

Trusted advice : [Boyar, Kamali, Larsen and López-Ortiz 2016]
[Mikkelsen 2016]

[A., Dürr, Kamali, Renault and Rosén 2018]

Trade-offs between advice size and competitive ratio, for error-free advice

Untrusted advice: [A., Dürr, Jin, Kamali, and Renault 2020]

Consistency-robustness tradeoffs for advice of a given size

Bin packing with frequency predictions

We assume a *discrete* model: The bin capacity is a constant k, and each item has integral size in [1,k]

Bin packing with frequency predictions

We assume a *discrete* model: The bin capacity is a constant k, and each item has integral size in [1,k]

Prediction: *Frequencies* at which the items are requested in the sequence Formally: for each size $x \in [1,k]$, the *frequency* $f_{x,\sigma}$ of x in the sequence σ is the number of items of size x in σ divided by the size of σ

Prediction error η : L_1 distance between the actual and the predicted frequencies

Bin packing with frequency predictions

We assume a *discrete* model: The bin capacity is a constant k, and each item has integral size in [1,k]

Prediction: *Frequencies* at which the items are requested in the sequence Formally: for each size $x \in [1,k]$, the *frequency* $f_{x,\sigma}$ of x in the sequence σ is the number of items of size x in σ divided by the size of σ

Prediction error η : L_1 distance between the actual and the predicted frequencies

Frequency predictions are PAC-learnable

Fix a (large) constant M. We call the multiset that consists of $[f_{x,\sigma} \cdot M]$ items of size x the **profile** of σ

We can compute the optimal packing of this profile set in O(1) time [Fukunaga and Korf 2007]

Fix a (large) constant M. We call the multiset that consists of $[f_{x,\sigma} \cdot M]$ items of size x the **profile** of σ

We can compute the optimal packing of this profile set in O(1) time [Fukunaga and Korf 2007]

Example: M=14, $k = 3, f_1 = 0.7, f_2 = 0.2, f_3 = 0.1$

Profile consists of 10 items of size 1, 3 items of size 2 and 2 items of size 3

Fix a (large) constant M. We call the multiset that consists of $[f_{x,\sigma} \cdot M]$ items of size x the **profile** of σ

We can compute the optimal packing of this profile set in O(1) time [Fukunaga and Korf 2007]

Example: M=14, $k = 3, f_1 = 0.7, f_2 = 0.2, f_3 = 0.1$

Profile consists of 10 items of size 1, 3 items of size 2 and 2 items of size 3

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of single bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of single bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Main idea: Pack the items by placing them in their profile placeholder

Algorithm opens profiles instead of simple bins (virtually)

Some main results

Some main results

Theorem: Profile Packing has consistency $1 + \epsilon$, and competitive ratio at most $1 + (2 + 5\epsilon)\eta k + \epsilon$

(excellent consistency, bad robustness)

Some main results

Theorem: Profile Packing has consistency $1 + \epsilon$, and competitive ratio at most $1 + (2 + 5\epsilon)\eta k + \epsilon$

(excellent consistency, bad robustness)

Lower bound: Let c < 1 be a constant. For any $\alpha \le c/k$, any algorithm that is $(1 + \alpha)$ -consistent must have robustness at least (1 - c)k/2

Robustification

Robustification

We define an algorithm **HYBRID**(λ), where $\lambda \in [0,1]$ is a parameter chosen by the user

Main idea: Some items are served using a competitive algorithm (A), and others using Profile Packing

Robustification

We define an algorithm **HYBRID**(λ), where $\lambda \in [0,1]$ is a parameter chosen by the user

Main idea: Some items are served using a competitive algorithm (A), and others using Profile Packing

Algorithm :

- Keep track of the number of items served by PP, and the total number of items Specifically: counters ppcount(x) and count(x) for all $x \in [1,k]$
- Upon arrival of an item of size x
 - If there is an available placeholder, use it, and declare it a PP-item
 - Otherwise, if $ppcount(x) \le \lambda \cdot count(x)$, serve it using PP Else serve it using A

Robustification (results)

Theorem: HYBRID(λ) has competitive ratio at most

$$(1 + \epsilon)((1 + (2 + 5\epsilon)\eta k)\lambda + c_A(1 - \lambda))$$
, where $c_A = \text{comp.}$ ratio of A

Better results can be achieved assuming knowing some upper bound on the error

Robustification (results)

Theorem: HYBRID(λ) has competitive ratio at most

 $(1 + \epsilon)((1 + (2 + 5\epsilon)\eta k)\lambda + c_A(1 - \lambda))$, where $c_A = \text{comp. ratio of A}$

Better results can be achieved assuming knowing some upper bound on the error

Note: Some approaches that do not work:

- Skip the first step of the algorithm
- Algorithms along the lines of [Mahdian, Nazerzadeh and Saberi 2012]

Improvements when few items can be packed in a bin (VM placement)

Sampling-based randomized online algorithms

Handling fractional items

Handling fractional items

Handling fractional items

If a fractional item appears, serve it separately using First Fit

We need a measure of the "integrality" of a sequence, e.g., $d(\sigma) = \sum_{x \in \sigma} |x - \lfloor x \rceil|$

This measure is too restrictive: no online algorithm with frequency predictions can have competitive ratio better than 4/3, even if $\eta = 0$, and $d(\sigma) = \epsilon$

Handling fractional items

If a fractional item appears, serve it separately using First Fit

We need a measure of the "integrality" of a sequence, e.g., $d(\sigma) = \sum_{x \in \sigma} |x - \lfloor x \rceil|$

This measure is too restrictive: no online algorithm with frequency predictions can have competitive ratio better than 4/3, even if $\eta = 0$, and $d(\sigma) = \epsilon$

Alternative:
$$\hat{d}(\sigma) = \frac{\sum_{x \in \sigma, x \neq \lfloor x \rfloor} x}{\sum_{x \in \sigma} x}$$
 (ratio of "fractional" sizes over total sizes)

Result: If an algorithm with frequency predictions has competitive ratio c for integral sizes, then we can transform it to an algorithm of competitive ratio $c + 2\hat{d}(\sigma)$ for fractional sizes

Experimental analysis

Error (η)

Future work

- Further improve the lower bounds
- Multi-dimensional bin packing
- Extend to full (i.e., "continuous") model (caveat: advice complexity impossibility results)
- Evolving distributions

Future work

- Further improve the lower bounds
- Multi-dimensional bin packing
- Extend to full (i.e., "continuous") model (caveat: advice complexity impossibility results)
- Evolving distributions

Full paper available at <u>www.jair.org</u>

Future work

- Further improve the lower bounds
- Multi-dimensional bin packing
- Extend to full (i.e., "continuous") model (caveat: advice complexity impossibility results)
- Evolving distributions

Full paper available at <u>www.jair.org</u>

Thank you!

A sampling-based online algorithm

We can use the PAC-learnability of frequency predictions to obtain a randomized algorithm that mixes a robust algorithm A and Profile Packing

Result: For any $\epsilon > 0$, there is a randomized algorithm with s samples that has expected

competitive ratio $(1 - \delta)(1 + \epsilon)((1 + (2 + 5\epsilon)\eta k + \epsilon) + c_A\delta)$, where $\delta = 1/\sqrt{2^{s\eta^2 - k}}$