A solution approach to the ROADEF/EURO challenge based on Bender's decomposition

Richard Lusby · Laurent Flindt Muller · Bjørn Petersen

Department of Management Engineering, Technical University of Denmark

Outline

- Solution approach
- Bender's decomposition (informal)
- MIP model
- Reducing the problem size, and post-optimization
- Results
- Conclusion

Solution approach

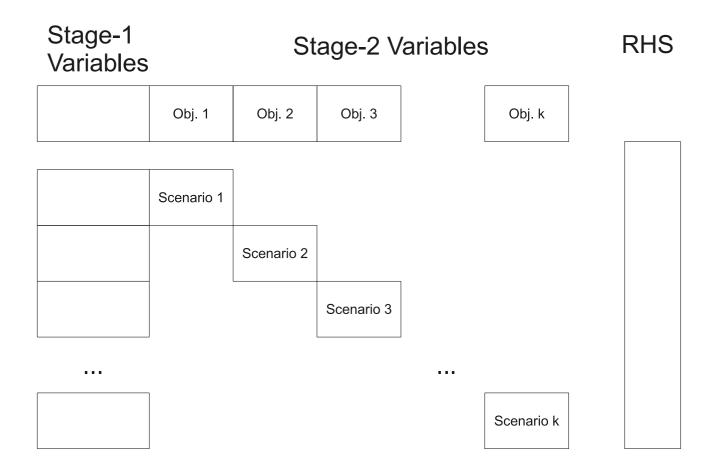
Solution approach

Problem divides naturally into two stages:

- Stage 1: Select outage dates and reload amounts for each type 2 power plant.
- Stage 2: Find a production campaign for each scenario independently.
- \Rightarrow Bender's decomposition.
- Need a MIP model of the problem. Not straight forward how to model:
 - CT6: Shutdown curve
 - CT12: Maximum modulation
- Strategy: Use solution from Bender's as a guiding solution, and try to "repair" it, i.e., adjusting production levels and reload amounts (will get back to this).

Bender's Decomposition (informal)

Bender's Decomposition (1)



Bender's Decomposition (2)

RHS

Objective

Stage 1 variables

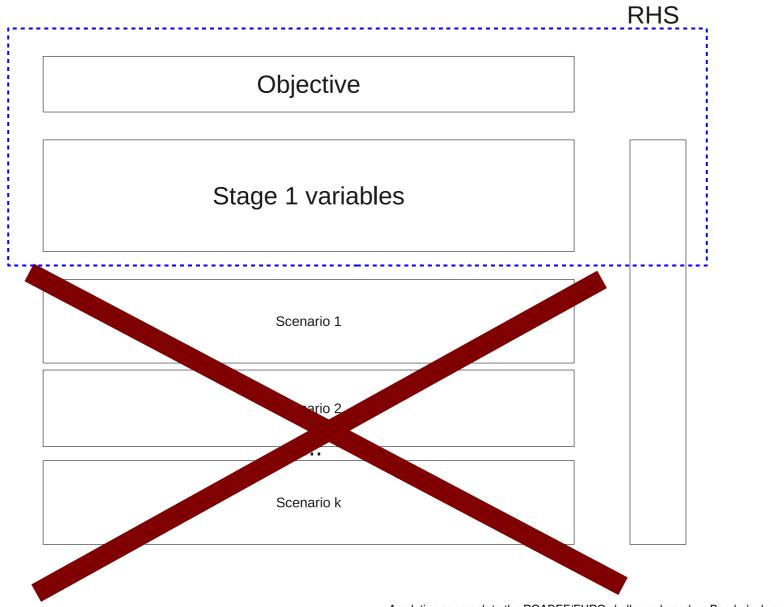
Scenario 1

Scenario 2

...

Scenario k

Bender's Decomposition (3)



A solution approach to the ROADEF/EURO challenge based on Bender's decomposition - p. 8

Bender's Decomposition of problem

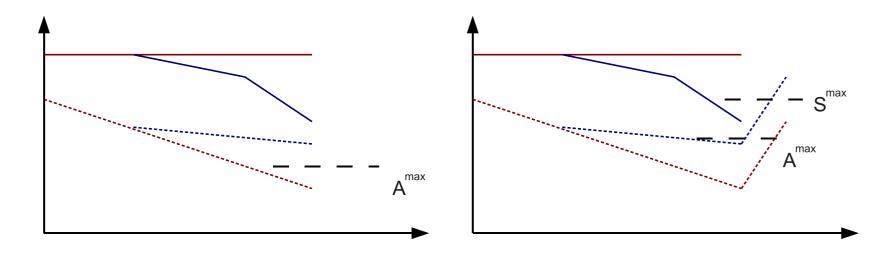
- Master problem: Select outage dates, and reload amounts for each cycle satisfying:
 - Constraints on cycle outage dates.
 - Constraints on reload amounts.
 - Bender's feasibility/optimality cuts.
 - Additional cuts (explained later).
- Sub-problem (one for each scenario): Given reload amounts, and outage dates for each cycle, find a minimum cost production plan satisfying:
 - Demands.
 - Stock levels below max. before/after reload.
 - (Maximum modulation)
 - (Shutdown curve)

What about shutdown curve, and maximum modulation?

Repair (1)

What are implications of repairing shutdown curve:

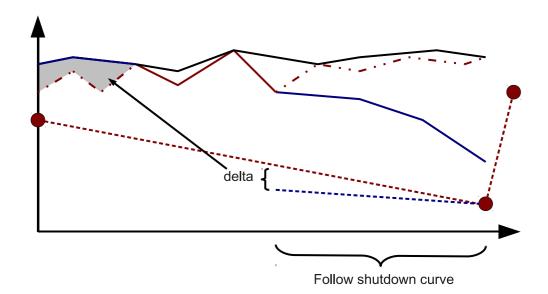
• $\Rightarrow A_{i,k}^{max}$ - or $S_{i,k}^{max}$ -constraints may become violated.



- What are implications of repairing maximum modulation:
 - \bullet \Rightarrow overproduction with regards to demand.

Repair (2)

- Repair-heuristic: Given outage dates/reload amounts, construct a feasible solution "not to far away" from the guiding solution.
- Try to consume excess stock at time t by increasing production levels for times < t.



Algorithm outline

Preprocess problem removing infeasible outage dates. **while** stop criteria not met **do**

Solve LP-relaxed Bender's master problem.

Solve Bender's sub-problems (each scenario).

if some sub-problem infeasible then

Add Bender's infeasibility cut to master problem.

else

Add Bender's optimality cut to master problem.

end if

end while

while stop criteria not met do

Generate a number of IP-solutions for problem (incl. Bender's cuts).

Attempt to repair solution.

Post-optimize solution.

end while

return best found solution.

MIP model

A solution approach to the ROADEF/EURO challenge based on Bender's decomposition - p. 14

Master problem

 $\overline{y_i}_{wk} = 1 \iff$ cycle (i, k) scheduled to start in week w. r_{ik} : The amount of fuel loaded in cycle (i, k). W_{ik}^{o} : Set of allowed outage weeks for cycle (i, k). t(w): Timestep corresponding to start of week w.

$$\begin{split} \min \cdot \sum_{i \in I} \sum_{k \in K} c_{ik} r_{ik} + 1/|S| \sum_{s \in S} \theta_s \\ \text{s.t. } r_{ik} \geq \underline{R}_{ik} \cdot \sum_{w \in W_{ik}^o} y_{iwk} & \forall i \in I, \forall k \in K \\ r_{ik} \leq \overline{R}_{ik} \cdot \sum_{w \in W_{ik}^o} y_{iwk} & \forall i \in I, \forall k \in K \\ \sum_{w \in W_{ik}^o} y_{iwk} \geq \sum_{w \in W_{i,k+1}^o} y_{i,w,k+1} & \forall i \in I, \forall k \in K \\ \sum_{i \in C_m} \sum_{k \in K} \sum_{w \in IT_m} \sum_{w' = w - DA_{ik} + 1} y_{iw'k} \cdot \sum_{t=t(w)}^{t(w+1)-1} P_{it}^{max} \leq I_m^{max} & \forall m \in M_{21}, \forall w \in W \\ \sum_{(i,w,k) \in H} y_{iwk} \leq K_H & \forall H \in \mathcal{H} \\ \end{split}$$

Subproblem

- Subproblem variables (for each scenario):
 - p_{jt} : The production level for type 1 plant j.
 - p_{itk} : production at time t if in cycle (i, k) for type 2 plant i.
 - x_{ik}^b : Fuel at the beginning of cycle (i, k).
 - x_{ik}^e : Fuel at the end of cycle (i, k).
 - x_i^f : Fuel at the end of time horizon for plant *i* (type 2).
- Subproblem sets and notation:
 - T_{ik}^p : Set of timesteps where cycle (i, k) could be in a production campaign.
 - $K_i(w)$: Set of cycles (i, k) which could be in a production campaign at in week w.
 - w(t): Week containing timestep t.

Subproblem

$$\underline{\text{min}} \cdot \sum_{t \in T} \sum_{j \in J} c_{jt} \cdot D_t \cdot p_{jt} - \sum_{i \in I} c_{i,T+1} \cdot x_i^f$$

$$s.t. \ x_{ik}^e = x_{ik}^b - \sum_{t \in T} D_t \cdot p_{itk} \qquad \forall (i,k)$$

$$x_{ik}^{b} = \mathbf{r_{ik}} + BO_{ik} \sum_{w \in W_{ik}^{o}} \mathbf{y_{iwk}} + \tilde{Q}_{ik} (x_{i,k-1}^{e} - BO_{i,k-1} \sum_{w \in W_{ik}^{o}} \mathbf{y_{iwk}}) \qquad \forall (i,k)$$

$$x_{ik}^{e} \le A_{i,k+1}^{max} + (1 - \sum_{w \in W_{ik}^{o}} y_{i,w,k+1})(M_{i}^{1} - A_{i,k+1}^{max}) \qquad \forall (i,k)$$

$$x_{ik}^b \le S_{i,k}^{max} + (1 - \sum_{w \in W_{ik}^o} y_{iwk})(M_i^1 - S_{ik}^{max}) \qquad \forall (i,k)$$

$$x_i^f \le \sum_{k' > k} \sum_{w \in W_{ik}^o} \mathbf{y}_{iwk'} M_i^1 + x_{ik}^e \qquad \qquad \forall (i,k)$$

$$p_{itk} \leq \overline{P}_{it} \cdot \rho(i, w(t), k) \qquad \qquad \forall (i, k, t \in T_{ik}^p)$$

$$\underline{P}_{j,t} \le p_{j,t} \le \overline{P}_{j,t} \qquad \forall (j,t)$$

$$\sum_{i \in I} \sum_{k \in K_i(w(t))} p_{itk} + \sum_{j \in J} p_{jt} \ge DEM_t \qquad \forall t$$

$$x_{ik}^b \ge 0, x_{ik}^e \ge 0, p_{itk} \ge 0, p_{jt} \ge 0$$

where $M_i^1 = \max_k S_{i,k}^{max}$, $\tilde{Q}_{ik} = \frac{Q_{i,k}-1}{Q_{i,k}}$

Additional master constraints

- Make subproblems more likely to be feasible:
 - Assume \overline{P}_{it} all points in time to lower bound stock at beginning and end of cycle.
 - Ensure lower bound satisfies A_{ik}^{max} -, and S_{ik} constraints.
- Make subproblems more likely to be repairable, i.e., closer to satisfying CT6:
 - Use upper bounds on production from the beginning, w of a cycle (i, k) to w' > w, assuming an initial fuel level, to bound x_{ik}^b, e_{ik}^e further.
 - This upper bound takes the shutdown curve into account.

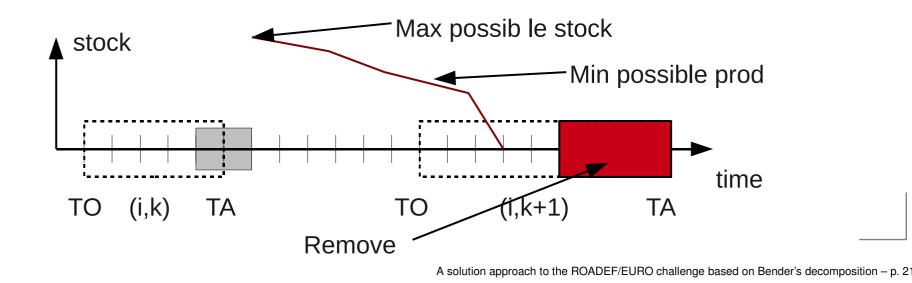
Reducing the problem size, and post-optimization

Preprocessing

- Conflict graph G = (V, E), where
 - every node $v \in V$ corresponds to a possible outage date of a cycle.
 - an edge $(u, v) \in E$, if there is a conflict between outage dates corresponding to u and v.
- Given a subset $S \subseteq V$, such that at least one node in Smust be picked, any node $u \in V$ incident to all nodes in S can be removed.
- The set of outage dates S for each cycle has this property.
- Very effective.

Heuristic removal of outage dates

- To further reduce the size of the master problem, outage dates may be removed heuristically.
- Assumption: It is not efficient to have a type 2 powerplant with no fuel for too long.
- Given a cycle (i, k), calculate the latest point in time, t_D , where fuel will have been depleated for that cycle.
- Update *TA* for cycle (i, k+1) such that $TA = (1+\alpha) * t_D$.

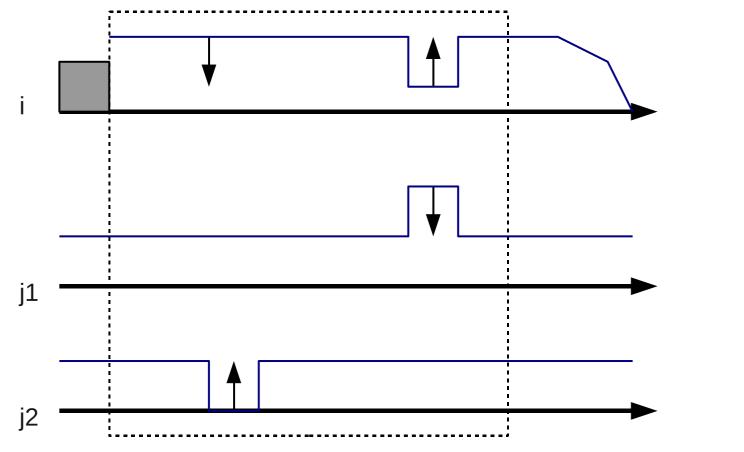


Aggregation of subproblems

- To reduce size of scenarios, these are solved on a weekly basis (rather than for every timestep).
- Cutting phase:
 - Not a problem for Bender's cuts, since these are based on variables relating to weeks.
- Solution generating phase (repair):
 - Solution to scenarios must be disaggregated before attempting repair.
 - Done heuristically.
 - If a dissagregation could not be found (one may not exist), then reload amounts are changed, and scenarios are resolved.

Post-optimization

- Given a solution, shift production between plants, and timesteps to improve cost.
- Do so withinout having to recalculate shutdown curves.



Computational results

Algorithm

,						
-	Name	#Cuts	#Sols	#Rep.	Dev.	Avg
-	data0	5	1688	1688	0.0709%	
-	data1	6	140	129	0.0677%	
-	data2	39	32	32	0.3119%	
-	data3	14	35	35	0.2130%	
-	data4	23	14	14	0.4379%	
-	data5	20	11	11	0.1818%	0.2139 %
-						Value
-	data6	20	9	9	90.08	38.820.435
-	data7	5	10	6	108.31	5.766.624
-	data8	1	4	3	2.675.66	63.995.927
-	data9	1	1	1	3.660.81	0.608.977
TU	data10	320	2	2	120.70	9.135.672
*				A solution a	pproach to the ROADEF/EURO cł	nallenge based on Bender's decompo

Preprocessing

Name	Total	Rem.	
data0	36	28.78%	
data1	3920	87.42%	
data2	7941	88.39%	
data3	8207	89.74%	
data4	17514	89.37%	
data5	15415	81.91%	
			Rem./TA
data6	24683	85.58%	85.79%
data7	35817	80.61%	80.74%
data8	69481	67.15%	77.87%
data9	69136	62.30%	75.26%
data10	30061	85.43%	85.45 %

Conclusion

- 2-stage approach:
 - Bender's to add cuts, to restrict the solution space.
 - Generate a number of IP solution, and solve scenarios for each IP solution.
- Ignored CT6, and CT12, and instead repair.
- Aggregate scenarios on a weekly basis.
- Preprocessing removes a big chunk of the problem.
- Gives a lower bound.

Problems:

- Too many binary variables (data8, data9)
 - \Rightarrow master takes long to solve \Rightarrow few cuts/solutions.
 - LP-solver + repair-heuristic probably to slow.

Questions & comments

Questions & comments

Thank you!

A solution approach to the ROADEF/EURO challenge based on Bender's decomposition - p. 28