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Problem definitions

• J is the set of M nuclear power plants (type 2).

• I is the set of N thermal power plants (type 1).

• S is the set of possible scenarii.

• T is the set of time steps.
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• I is the set of N thermal power plants (type 1).

• S is the set of possible scenarii.

• T is the set of time steps.

• For each thermal i ∈ I, for each scenario s ∈ S and for each time step
t ∈ T is given:

a minimal and a maximal production limits;
a production cost cs

i,t .
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Problem definitions

• J is the set of M nuclear power plants (type 2).

• I is the set of N thermal power plants (type 1).

• S is the set of possible scenarii.

• T is the set of time steps.

• For each thermal i ∈ I, for each scenario s ∈ S and for each time step
t ∈ T is given:

a minimal and a maximal production limits;
a production cost cs

i,t .

• For each nuclear j ∈ J , is given:

a nonnegative cost rj,o represents the fuel cost for each outage o.
a maximal production limit;
a maximal value and a minimal value bounding the quantity of fuel Fj,o

a non linear production profile to respect if fuel is under a threshold BO

a set of possible consecutive time steps for stopping for refueling
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Problem description

The problem: define a production planning for type 1 and type 2 such that:

• the total demand of energy is satisfied to equality (dt,s);

• the number of refueling for each power plant of type 2 is respected (at most
five).

• each refueling (outage), for each power plant of type 2, should respected
a time window.

• each production planning respects the min and max production limits

• the limit on the number of power plants of type 2 stopped together is
respected
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• the total demand of energy is satisfied to equality (dt,s);

• the number of refueling for each power plant of type 2 is respected (at most
five).

• each refueling (outage), for each power plant of type 2, should respected
a time window.

• each production planning respects the min and max production limits

• the limit on the number of power plants of type 2 stopped together is
respected

Objective: minimize the sum of the production cost for thermal plants plus the
refueling cost.
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Problem description

The problem: define a production planning for type 1 and type 2 such that:

• the total demand of energy is satisfied to equality (dt,s);

• the number of refueling for each power plant of type 2 is respected (at most
five).

• each refueling (outage), for each power plant of type 2, should respected
a time window.

• each production planning respects the min and max production limits

• the limit on the number of power plants of type 2 stopped together is
respected

Objective: minimize the sum of the production cost for thermal plants plus the
refueling cost.
Variables (i.e. decisions): ps

j,t , y s
i,t , ej,o, Fj,o , e′

j,o
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Mathematical formulation

• R: index set of all production planning for power plants of type 2.

• Rj : production planning for the power plant j of type 2.

• cℓ: cost production planning ℓ ∈ R.

• xℓ: binary variable equal to 1 iff production planning ℓ ∈ R is in solution.

• yi : linear variable representing how much of the demand is covered

(EDF ) z(EDF ) = min
∑

ℓ∈R

cℓxℓ +
∑

i∈I

∑

t∈T

∑

s∈S

c s
i,ty

s
i,t

s.t.
∑

ℓ∈R

as
ℓ,txℓ +

∑

i∈I

y s
i,t = d s

t ∀t ∈ T , ∀s ∈ S, (1)

∑

ℓ∈Rj

xℓ = 1 ∀j ∈ J ,

max s
i,t ≥ y s

i,t ≥ mins
i,t ∀i ∈ I, ∀t ∈ T , ∀s ∈ S,

xl ∈ {0, 1} ∀l ∈ R. (2)
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The method

The proposed approach can be divided in several Steps briefly described in the
following

Step1 Fix the outage and the BO periods

sub-step1 Filtering the data for passing from 5000 × 500 to 260 × 1

For each power plant of type 2 create an acyclic graph
sub-step2 Repeat the following three steps until a time limit is elapsed

For each power plant of type 2 solve a shortest path
Add the new columns to the master problem and solve it as a LP (i.e. relax
constraints 2)
For each power plant of type 2 update the reduced costs associated to the
arcs

sub-step3 Give the Master problem to CPLEX and add all the clique inequalities and
solve it to optimality

Step2 Solve the LP problem for fixing the fuel quantity with all scenario, but
with weeks instead of time steps

Step3 Solve the LP problem for fixing the production planning with all scenario
and time steps
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Sub-step 1 – Filtering the data

The MIP complexity is given by the number of integer variables, but also by its
dimension

• type 1: 100;

• type 2: 58;

• Scenarii: 500;

• Time step: 5000

We aggregate as follows :

• Aggregate time steps into weeks (i.e. from 5000 to 260) noted as h

• Aggregate Scenarii in a single average one (i.e. from 500 to 1) noted as s̄
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Sub-step 1 – The simplified model

(MIP) z(MIP) = min
∑

l∈R

clxl +
∑

i∈I

∑

h∈H

c s̄
i,hy s̄

i,h

s.t.
∑

ℓ∈R

as̄
ℓ,hxℓ +

∑

i∈I

y s̄
i,h = d s̄

h ∀h ∈ H , (3)

∑

ℓ∈Rj

xℓ = 1 ∀j ∈ J ,

max s̄
i,h ≥ y s̄

i,h ≥ mins̄
i,h ∀i ∈ I, ∀h ∈ H ,

xl ∈ {0, 1} ∀l ∈ R.
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Sub-step 1 – How to build the graph

A column for a power plant of type 2 is a production planning for the time
horizon
It can be modeled as a lot sizing therefore solved as a shortest path in a graph

(i) In graph Gj , nodes Nj and arcs Aj are constructed once for all at the
beginning of the process. Only the (reduced) cost values on the arcs of
Aj , that depend on the dual variables output by the linear resolution of
the restricted Master Problem, change at every iteration of the Column
Generation scheme.

(ii) An arc between two state nodes (h, e) and (h′, e′) necessarily satisfies the
maximum modulation constraint.

(iii) State nodes (h, BO) always exist in all graphs, so that the decreasing
profile on the following weeks is the exact profile without using tolerance ǫ.

(iv) The number of discretized levels of stock is equal to a fixed parameter
which remains the same for every week of the scheduling horizon.
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Sub-step 2 – How calculate the reduced costs

Lets define
cl =

∑

o∈O

rj,oFj,o

But
(ej,o − e′

j,o) +
∑

h∈O

aj,h
∼= Fj,o

Therefore

cl =
∑

o∈O

[(ej,o − e′

j,o)rj,o + rj,o

∑

h∈o

aj,h]

Then
c̄l =

∑

h∈H

(rj,h − uh)aj,h

where uh is the dual variable associated to constraints (3)

• For each nuclear power plant solve a shortest path on an acyclic graph

• If its reduced cost is negative add the column
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Sub-step 3 – Solving the MIP

It is possible to reinforce the MIP with a set of inequalities, since:

• The number of power plant of type 2 stopped at the same time is limited

• Not overlapping between outage dates is possible

(MIP) z(MIP) = min
∑

l∈R

clxl +
∑

i∈I

∑

h∈H

c s̄
i,hy s̄

i,h

s.t.
∑

ℓ∈R

as̄
ℓ,hxℓ +

∑

i∈I

y s̄
i,h = d s̄

h ∀h ∈ H ,

∑

ℓ∈Rj

xℓ = 1 ∀j ∈ J ,

∑

ℓ∈Rc

xℓ ≤ bc ∀c ∈ C ,

max s̄
i,h ≥ y s̄

i,h ≥ mins̄
i,h ∀i ∈ I, ∀h ∈ H ,

xl ∈ {0, 1} ∀l ∈ R.
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Step 2 - Solving the LP for fixing the fuel

(LP1) z(LP1) = min
∑

o∈O

∑

j∈J

Fj,orj,o +
∑

s∈S

∑

i∈I

∑

h∈H

c s
i,hy s

i,h

s.t.
∑

j∈J

ps
j,h +

∑

i∈I

y s
i,h = d s

h ∀h ∈ H , ∀s ∈ S

e′

j,o +
∑

h∈o

ps
j,h = ej,o∀o ∈ O

ej,o + Fj,o+1 = e′

j,o+1 ∀j ∈ J , ∀o ∈ O

max s
i,h ≥ y s

i,h ≥ mins
i,h ∀i ∈ I, ∀h ∈ H , ∀s ∈ S

max s
j,h ≥ ps

j,h ≥ mins
j,h ∀j ∈ J , ∀h ∈ H , ∀s ∈ S
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Step 3 - Solving the LP for fixing production planning

Once fixed the value of refueling and the date of outage and BO we reintroduce
the time step and we fix the rest (i.e. the variable x and y) respecting the
decisions already taken

(LP2) z(LP2) = min
∑

s∈S

∑

i∈I

∑

t∈T

c s
i,ty

s
i,t

s.t.
∑

j∈J

ps
j,t +

∑

i∈I

y s
i,t = d s

t ∀t ∈ T , ∀s ∈ S

e′

j,o +
∑

t∈o

ps
j,t = ej,o ∀o ∈ O

ej,o + Fj,o+1 = e′

j,o+1 ∀j ∈ J , ∀o ∈ O

max s
i,t ≥ y s

i,t ≥ mins
i,t ∀i ∈ I, ∀t ∈ T , ∀s ∈ S

max s
j,t ≥ ps

j,t ≥ mins
j,t ∀j ∈ J , ∀t ∈ T , ∀s ∈ S
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Computational results

• We considered 11 EDF instances partitioned into 2 sets and involving up
to 5000 time steps and 250 scenarii.

• Data and best known upper bounds are available at:

http://challenge.roadef.org/2010/instances.en.html;

http://challenge.roadef.org/2010/qualif.en.html.

• Computing times in seconds of:

Squeeze-x64-64 (image based on Debian version sid for AMD64/EM64T)
Bi AMD Opteron Dual core 3,2 Ghz

16 GB of physical memory

16 GB of swap memory.

(Rozenknop, Wolfler Calvo, Chemla, Létocart, Alfandari, Turri) 14 / 16

http://challenge.roadef.org/2010/instances.en.html
http://challenge.roadef.org/2010/qualif.en.html


Computational results on Class A instances

1 thread 1 threads
Name Objective value Objective value
data0 8.73626 ∗ 1012 8.73626 ∗ 1012

data1 1.75768 ∗ 1011 1.70030 ∗ 1011

data2 1.53383 ∗ 1011 1.46409 ∗ 1011

data3 1.61396 ∗ 1011 1.54710 ∗ 1011

data4 1.22967 ∗ 1011 1.12808 ∗ 1011

data5 1.38920 ∗ 1011 1.28366 ∗ 1011
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Computational results on Class B instances

1 thread 4 threads
Name Objective value Running time Objective value Running time
data6 8.47103 ∗ 1010 00:28:50 8.470769 ∗ 1010 00:18:00
data7 8.18527 ∗ 1010 00:55:20 8.184168 ∗ 1010 00:29:55
data8 8.30129 ∗ 1010 00:51:11 8.299788 ∗ 1010 00:34:09
data9 8.36119 ∗ 1010 00:47:45 8.367746 ∗ 1010 00:43:25

data10 7.87675 ∗ 1010 00:44:27 7.873125 ∗ 1010 00:46:52
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