
Challenge ROADEF / EURO 2018

Cutting Optimization

Problem Description

Lydia Tlilane and Quentin Viaud
Saint-Gobain, Datalab

May 18, 2018

Contents

1 Introduction 2

2 Problem description 3
2.1 Inputs, definitions and notations . . . . . . . . . . . . . . . . . . 3
2.2 Problem objective and constraints . . . . . . . . . . . . . . . . . 6

3 Example 9

1



1 Introduction

The Saint-Gobain Group designs, manufactures and distributes materials and
solutions which are key ingredients in the well-being of each of us and the future
of all. They can be found everywhere in our living places and our daily life:
buildings, transportation, infrastructure and in many industrial applications.
They provide comfort, performance and safety while addressing the challenges
of sustainable construction, resource efficiency and climate change.

Saint-Gobain Glass France (SGGF), part of the Saint-Gobain Group, is one
of the world’s leading flat glass manufacturers. It specialises in float glass man-
ufacture and magnetron coated glass producing an array of glass types with
different functions: transparency, thermal and acoustic insulation, safety, solar
control, decoration, self-cleaning function, etc. The products are intended for a
wide variety of domestic and commercial applications including housing equip-
ment (windows, bay windows, interior design), facade, urban development and
the realization of major projects.

Flat glass is mostly produced through a process called the ” float process ”.
In this process, various powders (sand, soda, . . . ) are melted together inside a
large furnace in order to create a liquid glass ribbon which is spread over a tin
bath and then cooled down to solidify. The obtained infinite ribbon is then cut
into large glass sheets (typically 3m x 6m) called jumbo’s. Afterwards, these
jumbo’s are stacked on stillages to be sent to so-called transformers. In general,
these jumbo’s are not used such as but are most of the time recut into smaller
rectangular pieces adapted to the needs of the customers. These smaller pieces
of glass are cut according to a cutting pattern which satisfies a certain amount of
constraints link to the customer (order, . . . ) or to the physics of glass (guillotine
which means that a piece of glass can only be cut from one edge to the other
through the propagation of a crack along a straight line). A cutting plan can be
seen as a paving of the jumbo by rectangular pieces of various sizes positioned in
such a way that the geometrical glass losses (remaining glass surface too small
to cut a new piece) are as low as possible. Actually, the jumbo’s are not perfect
in terms of quality and may also contain defects inherent to the float process. At
the exit of this process, a scanner allows, for each jumbo, to establish the map of
defects (position, criticity, . . . ). These defects can be considered as punctual in
our problem. This information is stored in a database which contains the map
of defects of each jumbo sold to a transformer. During the cutting process, when
a defect is positioned in a cut glass piece, it is, most of the time, rejected as a
quality loss. In this case, it is necessary to recut a glass piece of the same size
from the jumbo. This reduces significantly the productivity of the line. To avoid
this loss, one option is to adapt the cutting plan to the defect map measured
at the exit of the float process and position the defects inside the ”natural”
geometrical glass losses of the cutting plan instead. The goal of this challenge
is, for a given sequence of jumbo’s and their attached defect maps on one side,
and a given batch of glass pieces to cut, to propose an algorithm allowing to
reduce as much as possible the glass losses of the cutting process. This means
to minimize the number and the dimensions of the cut size containing a defect
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and to minimize the size of the geometrical glass losses.

2 Problem description

This section describes the input data, problem objective, constraints used in
this challenge.

2.1 Inputs, definitions and notations

Item: an item is a glass piece to cut. An item i is characterized by a pair
(wi, hi) representing its width and height.

Stack: a stack s = (i1, i2, . . . , ij) is an ordered sequence of items such that
i1 <cut i2 <cut . . . <cut ij , with <cut the partial order operator. For
two items i1 and i2, i1 <cut i2 means that item i1 has to be cut before
item i2. This order comes from some scheduling constraints related to the
deliveries and item processing.

Batch: a batch I is the set of items to cut. It corresponds to a customer order.
Using the stack notation, the item set I can be partitioned into n stacks,
I =

⋃n
k=1 sk.

Bin: a bin is a jumbo obtained at the end of the float process. A bin b is
characterized by its width Wb, its height Hb and its defect set Db. Jumbo’s
are stacked in the factory thus the bin set B is considered as ordered.
Assume that bins are indexed from {0, . . . , |B|}, for two bins b1 and b2,
b1 <cut b2 means that bin b1 is used to cut some items before starting
using bin b2. This implies that b1 is removed from the bin stack before
starting using bin b2. Bins are assumed in a quantity large enough to
cut all items and have the same size. The bin size is standardised. The
difference between them is related to their defect set.

Defect: a defect d is a tuple (xd, yd, wd, hd) with xd is its coordinates on the
x-axis, yd is its coordinates on the y-axis. wd (resp. hd) is its width (resp.
height).

Guillotine cut: a guillotine cut on a plate is a cut from one edge of the plate
to the opposite edge, parallel to the remaining edge. In other words, the
cut is guillotine if when applied to a rectangular plate it produces two new
rectangular plates. This type of cut is mandatory to cut glass, it produces
cracks otherwise. Figure 1 depicts guillotine and non guillotine patterns.
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Figure 1: Non guillotine (a) and guillotine (b) patterns. There is no item order.

Cutting pattern: a cutting pattern for a given bin is a two-dimensional plan
giving indication on how to cut items and the defect location for that bin.
In the problem discussed here, a cutting pattern is always composed of
guillotine cuts. Figure 2 depicts a guillotine pattern for a bin with one
defect and the way to perform cuts.
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Figure 2: An initial pattern (a) and its variants by performing cuts (b-c-d).
There is no item order.

Waste: a waste is a rectangular part of a bin which is not an item accord-
ing to a cutting pattern. A waste occurs during the cutting process and
corresponds to a raw material loss. Dashed lines in Figure 2 are losses.

α-cut: a guillotine cut of depth α. Due to technical limitation, the number of
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guillotine cuts which can be performed to cut an item is often limited by a
certain number. For instance, a cutting pattern is said to be 2-stage (resp.
3-stage) when an item has to be cut in at most 2 (resp. 3) guillotine cuts.
The notation α-cut is used to note the number of cuts performed so far.
The cutting pattern in Figure 2 is 3-stage, it requires two cuts to extract
item i1, three cuts to extract items i2 and i3.

Tree representation of a cutting pattern: a cutting pattern can be repre-
sented by a tree. This is possible since a guillotine cut always divides a
rectangular plate in two smaller rectangular plates. Its root corresponds
to the initial plate, its leafs are either the items or the wastes or the resid-
ual. The children of a given node except the leafs are the one obtained
after performing a cut at a depth level α from the root node. The tree
representation of pattern in Figure 2 is given in Figure 3.

i1

i2 i3

i1

i2 i3

i1 i2 i3

i2 i3

Figure 3: Tree representation of the cutting pattern from Figure 2
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2.2 Problem objective and constraints

The problem objective is to reduce the glass loss for a given ordered bin set B and
a given item batch to cut I. This problem is related to the two-dimensional bin-
packing problem but has extra constraints from industrial requirements. The
problem consists in providing two-dimensional cutting patterns that allow to cut
all items of the batch I using the available bins from B by satisfying some given
constraints like avoiding defects, respecting the partial order on item stacks and
bins and satisfying some physical constraints like guillotine cuts. Therefore, a
solution can be represented by a set of cutting patterns. The constraints of the
problem are defined hereinafter but the objective function is described first.

Formally, the objective function is to minimize the geometrical loss of the
cutting patterns applied on bins. Since glass leftover can be reused after cutting,
one has to take them into account to compute the loss area. To simplify the
residual management, only the residual in the last cutting pattern is considered.
It is represented by the waste at right of the last 1-cut performed in the last
cutting pattern in a solution. The residual of the pattern in Figure 2 corresponds
to the dashed part extract after the 1-cut. Let P = {p1, p2, . . . , pm} be a feasible
solution, i.e. a set of m cutting patterns satisfying all the constraints of the
problem. The loss is measured by summing up the loss area in cutting patterns
{p1, p2, . . . , pm−1}. For the loss in the last cutting pattern pm, only its non
residual part is taken into account. Let rm be the residual part of the pattern
pm. The objective function is :

min HWm−Hrm −
∑
i∈I

wihi (1)

Glass cutting is subject to some constraints that are related to the items,
the bins, the guillotine process, etc. A constraint can be physical, related to the
cutting of glass, or organizational to satisfy the orders. An overview of these
constraints is presented below. The solutions provided in this challenge must
satisfy all these hard constraints. The constraints related to item and bins are
the following:

• Only rotation by 90◦of items is allowed, i.e. the items can be set horizon-
tally or vertically on cutting patterns.

• All items in the batch I must be cut, i.e. a solution must contain the
entire batch.

• Item overproduction is not allowed, i.e. only the items in I should be cut
and a solution with extra items in cutting patterns is not valid.

• Each item belongs to the stack given in input and modifying the stack of
items is not allowed.

• The given sequence of items within stacks in cutting patterns has to be
satisfied among cutting patterns. For this, it is important to understand
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how to rebuild the sequence of items from a cutting pattern. In the cutting
pattern represented in Figure 2, the number on each item represents the
output order of this item after snapping guillotine lines in depth first. This
means that item i1 is cut first, then item i2, finally item i3. Each item ij′

is cut before item ij′+1 for all j′ = {1, 2}. This sequence of items can be
found with a depth-first-search in the corresponding tree representation in
Figure 3. Moreover, since the order of items are inside stacks only, there
is no order to ensure between items of different stacks.

• The bins are always horizontal (W > H) and their rotation is not allowed.

• The bins must be used in the given order, i.e for a feasible set of cutting
patterns P = {p1, p2, . . . , pm}, the bins used to create patterns p1, p2, . . . , pm
must correspond exactly to bins b1, b2, . . . , bm in that order.

The constraints related on how to build a cutting pattern are given below:

• Overlapping of items between them is not allowed.

• Overlapping of an item with one or more defects is not allowed in cutting
pattern, i.e. an item has to be defect-free.

• It is forbidden to cut through a defect.

• Cutting patterns are two-dimensional and be obtained using guillotine
cuts only. The number of cuts allowed to obtain an item is at most 3
(1,2,3-cuts only). However, it is possible to perform at most one 4-cut
in a sub-plate obtained after a 3-cut. This means that only one 4-cut is
allowed only if no additional cut is required to get two items or one item
and a waste. This is known in the literature as allowing trimming. An
example is given in Figure 4.
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Figure 4: Example of valid cutting patterns (a-b) and a forbidden pattern (c). In
pattern (a), the 4-cut is used only to remove the waste to get item i4. In pattern
(b), two 4-cuts are used to cut items i2, i3 and items i5, i6. This configuration is
allowed since a 4-cut is performed in each plate obtained after a 3-cut. In pattern
(c), two 4-cuts are performed to cut items i4, i5 and a waste. This configuration
is forbidden since two 4-cuts are performed in the same plate obtained after a
3-cut.

• It is possible to cut an item in less than 3 cuts (see item i1 in Figure 4-(a)).

• 1-cuts are always vertical as shown in Figure 4.

• The minimal width between two consecutive 1-cuts is 100, except for
wastes.

• The maximal width between two consecutive 1-cuts is 3500, except for the
residual.

• Due to the minimal and maximal widths between two consecutive 1-cuts
and from technical limitation, a cutting pattern must contain at least one
1-cut.

• The minimal height between two consecutive 2-cuts is 100, except for
wastes.
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• The width between two consecutive 1-cuts does not correspond necessarily
to the size of an item. Figure 5 illustrates bounds between two consecutive
1-cuts or 2-cuts.

Figure 5: Bounds on distance between two consecutive 1-cuts and 2-cuts.
Bounds are measured between two consecutive 1-cuts (or 2-cuts) and/or their
distances to edges of the bin.

• Minimal size of every waste area is (20, 20).

3 Example

In this section, a small problem instance is considered and its solution is ex-
plained. Let the following problem instance with item set I to cut composed
of the following stacks: I = s0 ∪ s1 ∪ s2 ∪ s3 where s0 = {i0, i1, . . . , i9},s1 =
{i10, i11, . . . , i15}, s2 = {i16, i17, . . . , i25} and s3 = {i26, i27}.

Figure 6 depicts a feasible solution to this instance. Two patterns p1 and p2
are used for bins b1 and b2. The bin size is (6000,3210). The used notation in
Figure 6 for each item is:

id: corresponds to iid (identifier of the item).

w: width of iid, i.e. size of iid on x-axis of the cutting pattern.

h: height of iid, i.e. size of iid on y-axis of the cutting pattern.

stk: corresponds to stack id {s0, s1, s2, s3} in which the item belong Sstk 3 iid.
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seq: corresponds to the position of the item in its stack (from 1 to |s0| for
instance).

From Figure 6, the items are cut in the following order (by snapping guil-
lotine lines in depth first): i26, i27, i0, i16, i17, i18, i10, i19, i11, i12, i13, i14, i1,
i20, i2, i21, i22, i23, i24, i3, i4, i5, i6, i15, i25, i7, i8, i9. It easy to check that the
item are cut according to their position in their respective stacks. The order on
bins is ensured since p1 is applied on bin b1 and p2 on bin b2. Since the solution
only requires two patterns, p2 is the last one. The sum of width of 1-cuts in p2
is 2995, thus its residual r is 3005.

10



(a)
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Figure 6: Example of a solution with two cutting patterns p1 (a) and p2 (b) for
bins b1 and b2. Red points are defects. Grey part represents the loss area, dark
one is the residual area.
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